
Unofficial Companion Notes to
Introduction to the Theory of Computation

by Michael Sipser

Kevin Sun

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Regular Languages 4
1.1 Finite Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Nondeterminism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Nonregular Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Context-Free Languages 11
2.1 Context-Free Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Pushdown Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Non-Context-Free Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Deterministic Context-Free Languages . . . . . . . . . . . . . . . . . . . . . 14

3 The Church-Turing Thesis 15
3.1 Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Variants of Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 The Definition of Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Decidability 18
4.1 Decidable Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Undecidability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Reducibility 22
5.1 Undecidable Problems from Language Theory . . . . . . . . . . . . . . . . . 22
5.2 A Simple Undecidable Problem . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Mapping Reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Advanced Topics in Computability Theory 26
6.1 The Recursion Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Decidability of logical theories . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Turing Reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4 A Definition of Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1



7 Time Complexity 27
7.1 Measuring Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2 The Class P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.3 The Class NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.4 NP-completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.5 Additional NP-complete Problems . . . . . . . . . . . . . . . . . . . . . . . . 32

8 Space Complexity 33
8.1 Savitch’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.2 The Class PSPACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.3 PSPACE-completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.4 The Classes L and NL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.5 NL-completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.6 NL equals coNL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

9 Intractability 38
9.1 Hierarchy Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.2 Relativization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.3 Circuit Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10 Advanced Topics in Complexity Theory 40
10.1 Approximation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.2 Probabilistic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.3 Alternation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.4 Interactive Proof Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.5 Parallel Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.6 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2



Preface

These notes are primarily written for anyone studying from the book Introduction to the
Theory of Computation by Michael Sipser, specifically the third edition. (In these notes,
whenever I refer to “the book,” I am referring to that book.) I think the book is excellent,
and I strongly recommend it. When writing these notes, I also consulted other resources,
most notably the following, which I also recommend:

• Introduction to Theoretical Computer Science by Boaz Barak

• Models of Computation by Jeff Erickson

These notes are not meant to be a substitution for the book. Instead, I think of them as
an unofficial companion to the book — they provide only a partial summary of the book. I
hope you find them useful.

— Kevin Sun
December 2023

Last updated: January 2024
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1 Regular Languages

Much of computer science is concerned with the task of solving a problem using an efficient
algorithm. In contrast, our main question throughout these notes is this: which problems
cannot be solved by an efficient algorithm? In fact, are there problems that cannot be solved
at all? To formally address these questions, we’ll need a mathematical model that captures
our intuition about “problems,” “algorithms,” etc. This chapter presents a relatively simple
one that acts as a nice starting point.

1.1 Finite Automata

A deterministic finite automaton (DFA) is a 5-tuple (Q,Σ, δ, q0, F ) consisting of:

1. a finite set Q, where each element of Q is called a “state,”

2. a finite set Σ called the “alphabet,” where each element of Σ is called a “symbol” or
“character,”

3. a function δ : Q× Σ → Q called the “transition function,”

4. a state q0 ∈ Q called the “start state,”

5. and a set F ⊆ Q of the “accept” states.

Fig. 1 contains a DFA M1 = (Q,Σ, δ, q0, F ) where Q = {q1, q2, q3},Σ = {0, 1}, q0 = q1, and
F = {q2}. The transition function δ is defined as follows:

δ(q1, 0) = q1 δ(q1, 1) = q2

δ(q2, 0) = q3 δ(q2, 1) = q2

δ(q3, 0) = q2 δ(q3, 1) = q2

In a typical diagram of a DFA, each circle represents a state, each double circle represents
an accept state, the arrows are labeled and represent the transition function, and the state
with an extra arrow pointing to it is the start state.

q1 q2 q3

0

1

1

0

0, 1

Figure 1: (Figure 1.4 from the book) A DFA M1 with 3 states. For any string w, M1 accepts
w if and only if w contains at least one 1 and an even number of 0s follow the last 1 in w.

It might not look like it, but every DFA corresponds to an algorithm. The input is any
string whose characters are from Σ (including the empty string, which we denote by ε), and
the output is either “accept” or “reject.” The algorithm is the following: starting at the
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start state q0, read each character of the input one at a time from left to right. If we’re
at some state qi and reading some character c, we move to the state δ(qi, c) and follow the
corresponding arrow in the diagram. Once we’re done reading the last character, if we’re in
an accept state then we accept, and otherwise we reject. If we were to implement a DFA in a
programming language like Python, the function would basically be a while loop containing
a bunch of if statements.1

A language is simply a set of strings. For any DFA M , we let L(M) denote the set of
strings accepted by M and say that M recognizes L(M). For example, the DFA defined
above recognizes the language

L(M1) = {w | w contains at least one 1 and an even number of 0s follow the last 1 in w}.

A language is a regular language if there exists a DFA that recognizes it. Every DFA
recognizes exactly one language (possibly ∅), but as you might guess, it is not the case that
every language is regular. For example, as we will see later in this chapter, the language
{0n1n | n ≥ 0} = {ε, 01, 0011, . . .} is nonregular. This is a conceptually significant result,
since it illustrates a limitation of DFAs — nobody, no matter how clever they are, will ever
be able to design a DFA that recognizes that language. But before we get there, let’s explore
regular languages a little more deeply.

Our first theorem states that the “class” (basically a set whose elements are themselves
sets) of regular languages is closed under the union operation, i.e., the union of two regular
languages is regular.

Theorem 1.1. If A1 and A2 are regular languages, so is A1 ∪ A2.

Proof (sketch). Since A1 and A2 are regular, there exist DFAs M1 and M2 that recognize
them. Our goal is to design a DFA M3 that recognizes A1 ∪ A2. In Python, we could
implement M3 as follows: given w, run M1(w), then run M2(w), and accept if and only if at
least one of the two DFAs accepts. But this isn’t a DFA, because DFAs can only read the
input once; a DFA cannot “start over” at any point.

Instead, our DFA M3 will simulate M1 and M2 by running M1(w) and M2(w) “at the
same time” and keeping track of two states at once. More specifically, each state in M3

will represent a pair of states: one from M1 and one from M2. If we’re at state (s1, s2) and
reading character c, we move to state (δ1(s1, c), δ2(s2, c)).

2 Once we’ve read the entire input,
if we’re in state (t1, t2), we accept if and only if t1 ∈ F1 or t1 ∈ F2.

Let’s continue to expand the class of regular languages; we want to see how far we can
go with DFAs. Theorem 1.1 tells us that one way to create a regular language is by taking
the union of any two regular languages. Another way is to concatenate: if A1 and A2 are
languages, then their concatenation is denoted by A1 ◦ A2, and it contains the strings that
consist of a string in A1 as a prefix, a string in A2 as a suffix, and nothing in between. If
A1 and A2 are regular, then so is A1 ◦ A2, but our proof strategy seems hard to apply. If

1Throughout these notes, I will use “Python” to refer to our usual model of computation (with loops,
conditionals, functions, arrays, etc.), which recognizes many more languages than DFAs do. Keep in mind
that eventually, we will study the “Python” model more formally.

2Sometimes, when I believe the context is relatively clear, I’ll use notation such as δ1 without defining it.
In this case, for all i ∈ {1, 2}, δi is the transition function for the DFA Mi.
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w ∈ A1 ◦A2, then w = xy for some x ∈ A1 and y ∈ A2, but if we’re just given w, how do we
“know” where x ends and y begins?

1.2 Nondeterminism

In this section, we’ll extend the capabilities of DFAs to allow for nondeterminism, which
helps us prove that the class of regular languages is closed under concatenation. Figure 2
shows an example of a nondeterministic finite automaton (NFA) N1.

q1 q2 q3 q4

0, 1

1 0, ε 1

0, 1

Figure 2: (Figure 1.27 from the book) An NFA N1 with 4 states. If we run N1 on the input
w = 010110, we’ll see that in the end, there are copies of N1 in q1, q3, and q4. Since q4 is an
accept state, N1 accepts w. In general, N1 accepts a string w if and only if w contains 101
or 11 as a substring.

The NFA “algorithm” is a parallelized version of the DFA algorithm: if an NFA N is at
a state q and there’s at least one ε-arrow leaving q, it creates one copy per ε-arrow, each
copy follows exactly one ε-arrow, and the original copy stays at q.3 (The NFA “pauses” its
reading of the input when this happens.) If N is at state q and reading some character c of
the input, it creates one copy per c-arrow, and each copy follows exactly one c-arrow. (The
original copy disappears.) If there are no c-arrows leaving q, then that copy of the machine
becomes “dead.” In the end, the overall algorithm accepts if and only if at least one living
copy is in an accept state.

Let’s define NFAs more formally: a nondeterministic finite automaton (NFA) has exactly
the same parts as a DFA (Q,Σ, δ, q0, F ), except the transition function δ has domain Q×Σε

(rather than Q×Σ) where Σε = Σ ∪ {ε} and codomain P(Q), where P(Q) is the power set
of Q (the elements of P(Q) are the subsets of Q, including ∅ and Q).

Hopefully it’s clear that an NFA is like a fancier version of a DFA: an NFA can create
multiple copies of itself if it wants to. But surprisingly, NFAs are not able to recognize a
bigger class of languages than DFAs. In other words, every NFA can be converted into an
equivalent DFA, where we say that two machines are equivalent if they recognize the same
language.

Theorem 1.2. For every NFA N , there exists an equivalent DFA M .

Proof (sketch). In the proof of Theorem 1.1, M3 keeps track of which two states we’d be in
if we ran M1 and M2 at the same time on the same input. This proof is similar but more
complicated: if N has n states, then M has 2n states, each representing the subset of states
in N that might be the location of some living copy of N . As N runs, the set of states that
have a living copy of N changes in some potentially messy — but traceable — way, which
defines the transition function for M .

3I’ll use the term “ℓ-arrow” to refer to an arrow whose label is ℓ.
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Thus, to show that a language is regular, it suffices to describe an NFA that recognizes
it. When describing an NFA, we can think of the NFA as “guessing” the “correct” arrow
to take whenever there are multiple choices, such that eventually, it arrives at an accept
state. Along the way, the NFA makes various copies of itself (i.e., the computation tree
grows branches), but it doesn’t matter if they die, accept, or reject. (However, we need to
make sure that the NFA doesn’t accept strings that we don’t want it to accept.)

To make this “guessing” concept more concrete, let’s apply it to sketch an alternative
proof of Theorem 1.1 (i.e., if A1 and A2 are regular, so is A1 ∪ A2).

Alternative proof (sketch) of Theorem 1.1. Given NFAs N1 and N2, we construct an NFA
N by starting with the “union” of N1 and N2, adding a new start state s, and adding an
ε-arrow from s to the start states of N1 and N2. (Notice that this is much simpler than M3

from the original proof: there’s just one additional state and two additional arrows.)
For any input w, N(w) immediately creates a copy of itself that runs N1(w) and another

that runs N2(w). We can imagine that N is “trying” to accept w, “guesses” which NFA
(either N1 or N2) will accept w, and takes the corresponding ε-arrow. In reality, the NFA
isn’t “trying” to do anything. Instead, its computation tree splits into three branches: one
stays at s, one moves to N1, and one moves to N2. If w ∈ A1 ∪A2, then at least one branch
will accept, so N will accept w. If w ̸∈ A1 ∪ A2, then none of the branches will accept, so
N will reject w. However, this idea that the NFA is “trying” to accept w and “guessing” its
way towards an accept state is useful for reasoning about nondeterminism.

Let’s use this “guessing” concept again to show that the class of regular languages is
closed under concatenation.

Theorem 1.3. If A1 and A2 are regular languages, so is A1 ◦ A2.

Proof (sketch). Let N1 and N2 be NFAs that recognize A1 and A2. The states of our NFA N
are Q1 ∪Q2, the start state is that of N1, and the accept states are F2. There is an ε-arrow
from each state in F1 to the start state of N2. For any input w, these additional ε-arrows
allow N to “guess” the location of the “spliting point” in w, i.e., the spot where the prefix
from A1 ends and the suffix from A2 begins. (In reality, whenever N enters a state in F1, it
creates a copy that “tries” that point in w as the splitting point by switching to N2.)

More specifically, if w ∈ A1 ◦ A2, then w = xy for some x ∈ A1 and y ∈ A2. Our NFA
N runs N1(w) first, and at some point, it will read the last character of x and enter F1. At
that point, one copy of N will begin running N2 on y, and N2 accepts y, so N accepts w.
Conversely, for any input w, N accepts w only if N1 accepts some prefix of w and N2 accepts
the rest of w, which implies w ∈ A1 ◦ A2.

Besides union and concatenation, another operation is called star : if A is a language, A∗

is the language that includes the strings that are the concatenation of strings in A (and no
other strings). For example, if A = {0, 1}, then A∗ = {ε, 0, 1, 01, 10, . . .} is the set of finite
binary strings. Note that for any language A, ε ∈ A∗.

Theorem 1.4. If A is a regular language, so is A∗.
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Proof (sketch). Let N be an NFA recognizing A. This proof is similar to the proof of
Theorem 1.3, but now, in our design of an NFA N∗ that recognizes A∗, we need to allow N∗

to “guess” that it should “restart” N whenever it reaches an accept state in N .
More specifically, N∗ has the same states and transition function as N , but we add an

ε-arrow from each accept state to the start state. The NFA N∗ also needs to accept ε (even if
N doesn’t), and one natural way to do this is to make the starting state of N an accept state
in N∗. But this doesn’t quite work (Exercise 1.15 from the book asks for a counterexample);
a solution that does work is to add a new start state s, which is an accept state, and an
ε-arrow from s to the original start state of N .

1.3 Regular Expressions

Let’s briefly turn our attention away from DFAs and NFAs and toward regular expressions.
A regular expression is a way of specifying a set of strings (i.e., a language) according to some
desired pattern. For example, suppose we’re searching a text document to find the number
of strings of even length. Assuming that we’re only working with lowercase characters, we
could search for (aa, ab, ac, . . . , zz) and sum their frequencies to get the total, but that would
take a long time and we might make a mistake. Instead, if we know the regular expression
for “strings of even length,” then we’d improve both our speed and accuracy.

The exact definition of a regular expression is recursive, which makes it a bit tricky,
so we won’t state it formally. Instead, here’s an informal version: given an alphabet Σ, a
regular expression is a string whose characters are in the set Σ ∪ {ε, ∅,∪, ◦,∗ , (, )}. Every
regular expression describes a language, and the symbols {∪, ◦,∗ } correspond to union,
concatenation, and star. To keep the regular expression short, we typically omit these
symbols, along with parentheses, if the described language is clear.

Despite the difference between a regular expression R and the language described by R,
we often think of them as the same thing. Here are a few examples from Example 1.53 in
the book, assuming Σ = {1, 0}:

Regular expression R Language described by R

0∗10∗ {w | w contains exactly one 1}
Σ∗1Σ∗ {w | w contains at least one 1}
1∗(011∗)∗ {w | every 0 in w is followed by at least one 1}
(ΣΣ)∗ {w | w has even length}
(0 ∪ ε)(1 ∪ ε) {ε, 0, 1, 01}

The fact that we’ve used the term “regular” in two different ways (for languages and expres-
sions) should be telling: This class of languages described by regular expressions is exactly
the same as the class of regular languages.

Theorem 1.5. A language is regular if and only if some regular language describes it.

Proof (sketch). The backward direction is easier: given a regular expression R that describes
some language A, we can define an NFA that recognizes A using a recursive procedure similar
to the proofs that the class of regular languages is closed under union, concatenation, and
star. For example, if R = R1◦R2 where R1 and R2 are regular expressions, we can recursively
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construct NFAs N1 and N2 that recognize R1 and R2 and combine them using the procedure
described in the proof of Theorem 1.3.

To prove the forward direction, we show that we can convert any DFA M that recognizes
a language A into a regular expression that describes A. This proof is quite involved, so we
omit it from these notes.

Theorem 1.5 tells us that for any language A, if we can give a regular expression R that
describes A, then A must be regular. In particular, the proof of the theorem shows us how
we can convert R to an NFA N that recognizes A, and if we wanted to go further, we can
use Theorem 1.2 to convert N into an equivalent DFA M . (Finally, recall that a DFA is
basically just a while loop containing a multiple if statements.)

1.4 Nonregular Languages

In this section, we’ll see how we can prove that a language is not regular. In particular, we’ll
learn about fooling sets and the pumping lemma, two techniques for proving that a language
is nonregular. The content on the pumping lemma is based on the book, but the content on
fooling sets is based on the notes Models of Computation by Jeff Erickson.

Technique 1: Fooling Sets

As mentioned earlier in this chapter, the language L = {0n1n | n ≥ 0} = {ε, 01, 0011, . . .}
is nonregular. Here’s an explanation: for contradiction, suppose there exists a DFA M
that recognizes L, and consider the ending states when we run M on each string in 0∗ =
{ε, 0, 00, . . .}. SinceM only has a finite number of states but 0∗ has infinitely many elements,
there must be distinct integers i, j such thatM(0i) andM(0j) end in the same state. But this
means M(0i1i) and M(0j1i) also end in the same state, which contradicts the assumption
that M recognizes L because this state cannot simultaneously accept 0i1i ∈ L and reject
0j1i ̸∈ L. This argument shows that 0∗ is a “fooling set” for L: the strings in 0∗ can “fool”
M into not being able to recognize L.

In general, a fooling set for a language A is a set F of strings such that, for any distinct
strings x, y ∈ F , there is a string z, which we call a “distinguishing suffix,” such that exactly
one string in {xz, yz} is in A.

Theorem 1.6. If F is a fooling set for a language A, then any DFA M that recognizes A
has at least |F | states. In particular, if F is an infinite set, then A is nonregular.

Proof. We claim that for any strings x, y ∈ F , M(x) and M(y) end in different states; this
implies M has at least |F | states. For contradiction, assume M(x) and M(y) end in the
same state, and let z be their distinguishing suffix. Since M(x) and M(y) end in the same
state, M(xz) and M(yz) also end in the same state. If this state is an accept state, then
M accepts both xz and yz; if not, then M rejects both xz and yz. Either way, M cannot
“distinguish” between xz and yz (i.e., accept exactly one string in {xz, yz}), which means
M does not actually recognize A.

If F is an infinite set, then M cannot even be a DFA (much less one that recognizes A)
because the definition of DFA requires that M has a finite number of states.
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Theorem 1.6 gives us one way to prove that a language A is nonregular: construct an
infinite fooling set. For A = {0n1n | n ≥ 0}, we saw that 0∗ is a fooling set, where the
distinguishing suffix for x = 0i and y = 0j is z = 1i.

Technique 2: The Pumping Lemma

Another way to prove that a language is nonregular is by using the pumping lemma.

Theorem 1.7 (Pumping lemma). If A is a regular language, then there exists a number p
(the “pumping length”) such that for all s ∈ A satisfying |s| ≥ p, s can be split into s = xyz
such that (1) for all i ≥ 0, xyiz ∈ A, (2) |y| > 0, and (3) |xy| ≤ p.

Before we sketch the proof, let’s see how, at a high level, the pumping lemma helps us
prove that a language A is nonregular. For contradiction, assume A is regular. Then A has
a pumping length p, and the pumping lemma states that every string s satisfying |s| ≥ p can
be “pumped,” i.e., A must contain infinitely many “longer versions” of s. However, if we
can show that some string generated in this way isn’t actually in A, then we can conclude
that A is nonregular.

Proof (sketch). Let M be a DFA that recognizes A, and let p be the number of states in M .
For any s ∈ A such that |s| ≥ p, consider the sequence of states Q that M enters when it
runs on s. Notice that |Q| = |s| + 1 > p, so some state q appears at least twice (by the
pigeonhole principle) within the first p + 1 terms of Q. We split s into xyz as follows: x is
the prefix of s that M reads immediately before entering q, y is the part of s that gets read
between the first and second time M enters q, and z is the suffix of s after y.

Now we can check that all three conditions are satisfied: (1) since M(x) and M(xy) lead
to the same state and M accepts xyz, (2) since q appears (at least) twice in Q and y is the
portion that s that M reads between those appearances, and (3) since q appears (at least)
twice in the first p+ 1 terms of Q.

Let’s apply the pumping lemma to show that our favorite nonregular language L =
{0n1n | n ≥ 0} is nonregular. If L were regular, then it has a pumping length p. Let
s = 0p1p, and let’s consider the different ways to split s into xyz:

1. If y = 0j for some j, then xy2z ̸∈ L because xy2z has more 0s than 1s.

2. If y = 1j, then xy2z ̸∈ L because xy2z has fewer 0s than 1s. (Also, we wouldn’t have
|xy| ≤ p.)

3. If y = 0i1j for some i and j, then xy2z ̸∈ L because it has some 1s before some 0s.
(Also, we wouldn’t have |xy| ≤ p.)

So regardless of how we split s, xy2z ̸∈ L, so L is nonregular.
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2 Context-Free Languages

2.1 Context-Free Grammars

In Chapter 1, we studied regular languages from two perspectives: regular expressions and
finite automata. We’ll do the same thing in this chapter but for a broader class of languages
known as context-free languages (CFLs).

Just as regular expressions describe regular languages, context-free grammars describe
context-free languages. But context-free grammars are more powerful, i.e., the class of CFLs
contains all regular languages and more, including {0n1n | n ≥ 0}. They were originally
used to study human languages (e.g., verbs, nouns, etc.) but are also used in the design of
compilers and interpreters of programming languages.

Here is an example of a context-free grammar G:

A → 0A1

A → B

B → #

Each line of G is a substitution rule or production.1 Each rule has a variable on the left and
a string of variables and terminals on the right, and one of the variables is the start variable.
Note that ε can also be on the right-hand side of a rule. For convenience, we often use the
“|” symbol to represent the “or” of multiple substitution rules, as in A → 0A1 | B (instead
of the first two rules above).

In G, the variables are {A,B}, the terminals are {0, 1, #}, and the start variable is A.
The language denoted by G, denoted L(G), is {0n#1n | n ≥ 0}. A derivation is the sequence
of substitutions used to generate a string in L(G). For example, here is a derivation of the
string 00#11 ∈ L(G):

A ⇒ 0A1 ⇒ 00A11 ⇒ 00B11 ⇒ 00#11

We can also represent the derivation by a parse tree rooted at the start symbol; each node
has children according to a substitution rule. The leaves of the parse tree, combined from
left to right, represent the generated string; see Figure 3.

Ambiguity

A derivation is a leftmost derivation if, at every step, it replaces the leftmost remaining
variable. A grammar is ambiguous if it can generate some string using at least two leftmost
derivations. For example, the grammar below is ambiguous:

E → E+E | E×E | (E) | a

For example, it can generate a+a×a by first applying either E → E+E or E → E×E. Some
CFLs are inherently ambiguous (i.e., they can only be generated by ambiguous CFGs), while

1The term “context-free” refers to the fact that in a context-free grammar, the rules are independent of
each other. When deriving strings, we do not need to consider the context when determining which rules we
can apply. The use of the term “regular” is more arbitrary; it was originally chosen by Stephen Cole Kleene.
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Figure 3: A parse tree for 00#11 in the grammar G.

others are not. For example, the ambiguous grammar above describes the same grammar as
the unambiguous one below:

E → E+T | T
T → T×F | F
F → (E) | a

To generate a+a×a, we must start with E → E+T .

Chomsky Normal Form

Recall that we can convert any NFA into a DFA that recognizes the same language. Similarly,
we can convert any CFG into a form called Chomsky normal form. In this form, every rule
is of the form A → BC or A → a where A,B,C are variables, B and C are not the start
variable, and a is a terminal. We are also allowed to include S → ε, where S is the start
variable.

Theorem 2.1. Every CFL is generated by a CFG in Chomsky normal form.

Proof (sketch). Given a CFG G, we can modify it to a CFG G′ such that G and G′ describe
the same language and G′ is in Chomsky normal form. To start, we add a new start variable
S0 and the rule S0 → S, where S was start variable of G. This ensures that the start variable
is not in the right-hand side of any rule. Next, we replace rules of the form A → ε for all
A ̸= S by adding R → uv for every rule R → uAv. Along these lines, we can keep replacing
and adding rules to G until we reach our goal.

2.2 Pushdown Automata

Pushdown Automata (PDA) are a computational model that recognizes CFLs, the same way
NFAs are a computational model that recognizes regular languages. More specifically, in this
section, we consider nondeterministic PDAs because the class of languages they recognize is
the class of CFLs. Unlike NFAs, nondeterministic PDAs recognize a larger class of languages
than their deterministic counterparts.

12



A PDA is like an NFA: it has states Q, a transition function δ, a start state q0, and
accept states F ⊆ Q. Additionally, a PDA has a stack ; it can push symbols to it and pop
symbols from it. More formally, δ has domain Q× Σε × Γε, where Σ is the input alphabet,
Γ is the stack alphabet, and Aε = A ∪ {ε}. Given a state, input symbol, and stack symbol,
the PDA can both (1) enter a new state and (2) push a symbol onto the stack or replace
the symbol on the stack with another symbol (possibly ε, which represents popping from the
stack). Since the PDA is nondeterministic, δ specifies a subset of all possible outcomes, i.e.,
the codomain of δ is P(Q× Γε).

Example. Here is the informal description of a PDA that recognizes L = {0n1n | n ≥ 0}:
when reading a 0s, push it onto the stack. When reading a 1, pop one 0 off the stack per 1.
If we finish reading the input exactly when the stack becomes empty, then accept. Otherwise
(i.e., if the stack becomes empty too early, never becomes empty, or a 0 appears after a 1),
reject. The formal description is in Figure 4. In a diagram of a PDA, we use “a, b → c” to
signify that when the PDA is reading a from the input, it replaces the symbol b on the top
of the stack with a c.

q1 q2 q3 q4
ε, ε → $

0, ε → 0

1, 0 → ε

1, 0 → ε

ε, $ → ε

Figure 4: (Figure 2.15 from the book) A PDA that recognizes {0n1n | n ≥ 0}. We start
by pushing a $ onto the stack, and the PDA “knows” the stack is empty when it sees the
$. The loop at q2 represents pushing 0s to the stack, and the loop at q3 represents popping
them from the stack.

As we’ve already implied, PDAs and CFGs are equivalent in power:

Theorem 2.2. A language is context free if and only if it is recognized by some PDA.

Proof (sketch). Let G be a CFG; we can convert G to an equivalent PDA P . Given a string
w, P needs to determine if there is a derivation for w in G. The PDA starts with the start
variable in its stack, (nondeterministically) “guesses” the next substitution rule to make
until it arrives a string s of terminal, and accepts if s = w. As P guesses, it matches a prefix
of w with a prefix of the intermediate string and stores the rest of the intermediate string,
starting with the first variable, in the stack for future processing.

Conversely, we can convert any PDA P to an equivalent CFG G. For each pair of states
(p, q) in P , G has a variable Apq that generates the set of strings that take P from p to
q without changing its stack. By making some simplifying assumptions about P , we can
compute Apq using the recursive rules App → ε, Apq → aArsb and Apq → AprArq for states r
and s “between” p and q.

Since an NFA can be viewed as a PDA that ignores its stack, every regular language is
also a context-free language.
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2.3 Non-Context-Free Languages

Recall that the pumping lemma helps us prove that a language is nonregular. There is a
similar, more complicated version for CFLs.

Theorem 2.3 (Pumping lemma for CFLs). If A is a CFL, then there exists a number p (the
“pumping length”) such that for all s ∈ A satisfying |s| ≥ p, s can be split into s = uvxyz
such that (1) for all i ≥ 0, uvixyiz ∈ A, (2) |vy| > 0, and (3) |vxy| ≤ p.

Proof (sketch). This proof, like the one for the pumping lemma for regular languages, also
uses the pigeonhole principle. Let G be a CFG that describes a language A. Intuitively,
consider a very long string s ∈ A. The parse tree T for s is very tall, so on some path
from the root to a leaf, some variable R gets repeated. We can do some “surgery” on T
by replacing the subtree rooted at the lower appearance of R (which generates x) with the
subtree rooted at the upper appearance of R (which generates vxy). The resulting tree is
still a valid parse tree in G, so its corresponding string is in A.

We’ve used the pumping lemma to show that {0n1n | n ≥ 0} is nonregular; we can
similarly show that L = {anbncn | n ≥ 0} is not context free. The proof is quite similar
(consider s = apbpcp), so we omit it.

2.4 Deterministic Context-Free Languages

[unfinished]
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3 The Church-Turing Thesis

We’ve seen a few models of computation: DFAs, NFAs, and PDAs. Recall that a DFA is
basically a while loop containing if statements, an NFA is a DFA that can branch off in
multiple directions at once (and every NFA has an equivalent DFA), and a PDA is an NFA
that can use additional memory in the form of a stack. In this chapter, we introduce the
Turing machine, a much more powerful model of computation that can do everything a “real
computer” (e.g., any Python program) can do.

3.1 Turing Machines

Turing machines were first proposed by Alan Turing in 1936. The “heart” of a Turing
machine (TM) is like an DFA (with states, transitions, etc.), but a TM has infinite memory
in the form of a tape, which initially contains the input followed by infinitely many empty
cells. The TM has a “read-write head,” and at each step, it can read from one cell in the
tape, write to that cell, and move the head left or right.1

Formally, a Turing machine M has 7 parts: states Q, a start state, an accept state, a
reject state (not equal to the accept state), an input alphabet Σ (that does not contain a
special “blank” symbol ⊔), a tape alphabet Γ (where ⊔ ∈ Γ and Σ ⊂ Γ), and a transition
function δ : Q× Γ → Q× Γ× {L, R}.

Initially, the input w is in the first |w| cells of the tape, the remaining cells all contain
⊔, and the tape head is on the leftmost cell. If δ(q, a) = (r, b,L), then M goes from state q
to state r, replaces the a under the tape head with b, and moves the tape head left. (If the
tape head is already on the leftmost cell, it stays put.) If M ever enters the accept or reject
state, it immediately halts; if not, we say it “loops.”

Configurations. A configuration of a TM M is a “snapshot” of its contents as it runs —
more specifically, it comprises M ’s current state, tape contents, and tape head location. We
can capture this information in one string as follows: if the current state is q, the contents
of the tape before the tape head is u, and the contents of the tape starting at the tape head
(ignoring the infinitely many blank symbols at the end) is v, then the configuration is uqv.

Languages. The set of strings accepted by M is the language recognized by M , denoted
L(M), and we say a language is Turing-recognizable if some Turing machine recognizes it. If
M halts on all inputs, we call it a decider, and we say a language is Turing-decidable if some
Turing machine decides it. Every Turing-decidable language is Turing-recognizable, but as
we’ll see, the converse is not true.

Giving a complete example of a Turing machine is quite tedious, so we will resort to
informal descriptions. For example, the decider given in the book (Example 3.9) for the
language {w#w | w ∈ {0, 1}∗} has 10 states, and the corresponding diagram has 17 transition
arrows. Here is an informal description: Zig-zag across the tape on both sides of # to check

1We can think of the tape as an array A with indices {1, 2, . . .}, and the head is an index i. At each step,
we can read A[i], overwrite A[i], and increase or decrease i by 1.
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if the corresponding cells match. Replace matching symbols with an x to keep track of
progress. When all symbols left of # are x, check if non-x symbols remain right of #, and
accept/reject accordingly.

3.2 Variants of Turing Machines

There are many variants of Turing machines, including versions with multiple tapes and/or
nondeterminism. Yet these variants all have the same power as the model described in the
previous section, in the sense that all of them recognize the same class of languages. The fact
that this class is not sensitive to changes in the model is one reason why Turing machines
have been widely accepted and studied.

For example, suppose we allowed a TM to keep its tape head in its current location
(rather than force it to move left or right). This might seem like a special feature, but we
can simulate staying put by simply replacing each “stay put” transition with two transitions:
the first moves the tape head right, and the second moves the tape head left.

Multitape Turing Machines

Suppose a TM M has k tapes and a read-write head for each tape. We can simulate these
tapes on a TM S with one tape as follows: Create a new symbol # that separates the contents
of the k tapes on our single tape. Furthermore, for each tape symbol a, add a new symbol ȧ.
A dot above the symbol represents that the corresponding tape head is on that symbol. To
simulate a single move by M , S scans its tape for the #s and ȧ symbols and updates the tape
accordingly. If S runs out of room between two #s (because some tape head in M moved
sufficiently right), it shifts all symbols on the tape after this point one cell to the right.

Nondeterministic Turing Machines

Similarly, we can simulate a nondeterministic TM (NTM) N by a deterministic TM D that
has three tapes. The definition of an NTM is the expected one: the copies of N form a
computation tree, where the children of each node represent the copies determined by the
transition function δ : Q × Γ → P(Q × Γ × {L, R}). An NTM N accepts w if (and only
if) at least one of its computation branches accepts w. To simulate N , D can use breadth-
first search in this tree to find a copy of N in the accepting state. Thus, a language A is
Turing-recognizable if and only if an NTM recognizes A, and we can similarly show that A
is decidable if and only if an NTM decides A.2

3.3 The Definition of Algorithm

Suppose we want to determine if we can find integers x, y, z such that

6x3yz2 + 3xy2 − x3 − 10 = 0.

2The book describes how we can translate multitape TMs and nondeterministic TMs into deterministic
single-tape TMs. But it doesn’t go into the details on how we can translate, say, a full-fledged Python
program into an equivalent Turing machine. For more on that topic, I recommend Introduction to Theoretical
Computer Science by Boaz Barak.
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The solution (x, y, z) = (5, 3, 0) works, but is there an algorithm for any polynomial? This
was one of David Hilbert’s 23 problems he posed as challenges in 1900. Believe it or not,
the answer is no! But before anyone could prove a statement like this, we needed a formal
definition of “algorithm.” In 1936, Alonzo Church defined algorithms using a system called
λ-calculus, and Alan Turing used Turing machines. These definitions were shown to be
equivalent, and in fact, the Church-Turing thesis refers to the informal idea that these
definitions capture our intuitive notion of an “algorithm” as a sequence of clear steps.

The rest of the book focuses on algorithms, with the TMs simply serving as the formal
computational model in the definition of algorithm. The input is always a string, which
could represent various objects (e.g., graph, grammar, DFA). We use ⟨A⟩ to denote the
string representation of an object A. The details of the encoding do not matter, since any
reasonable encoding can be understood and translated by a TM.

Example. Consider the following language:

A = {⟨G⟩ | G is a connected undirected graph}.

For any graph G, one encoding ⟨G⟩ is to list its vertices in a sequence (with parentheses and
commas), followed by its edges in a sequence. For example, we could use the string below
to represent a graph with a triangle on {1, 2, 3} and an additional edge {1, 4}:

⟨G⟩ = (1,2,3,4)((1,2),(2,3),(3,1),(1,4))

Here is a TM that decides A: given ⟨G⟩, mark the first node. Then repeat the following
until no new nodes are marked: for each node in G, mark it if it is adjacent to a marked
vertex. Finally, if all nodes in G are marked then accept; otherwise, reject. This description
is quite high-level, but it is sufficient after we feel familiar with more detailed descriptions
of TMs (i.e., specifying the states, defining the transition function, and so on).
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4 Decidability

Decidability is what we usually consider when using an algorithm to solve a problem. Recall
that a language is Turing-decidable (or just Decidable) if some Turing machine M decides
it, that is, for every string w, M(w) either outputs “accept” or “reject” — it does not enter
an infinite loop. Similarly, when we solve problems (e.g., finding a shortest path in a graph),
we often implicitly assume that any algorithm we give should always return something, even
if it’s not necessarily correct.1

4.1 Decidable Languages

The problems we’ll consider are rather “meta” in the sense that the inputs are themselves
algorithms (at an abstract level) that we’ve already seen. More specifically, we’ll study
problems concerning finite automata and context-free grammars (which are equivalent to
pushdown automata), the two main topics of the previous chapters.

Regular Languages

Consider the following language:

ADFA = {⟨B,w⟩ | B is a DFA that accepts input string w}.

A decider for this language is simply the following: given ⟨B,w⟩, first check that the input
properly represents a DFA. (Recall that a DFA is just a list of states, a transition function δ,
etc., so there are many reasonable ways to represent any DFA as a string.) Then simulate B
on w by tracking B’s state on the tape and updating according to δ. Finally, if B accepts w
then we accept ⟨B,w⟩; otherwise, we reject. Since we can convert any NFA to an equivalent
DFA (see Theorem 1.2), the language ANFA, defined analogously, is also decidable.

Here’s another decidable language:

EDFA = {⟨A⟩ | A is a DFA and L(A) = ∅}.

A TM that decides EDFA is similar to one that determines if a graph is connected: mark the
start state of A, keep marking states that are reachable from a marked state until no new
states get marked, and return “accept” if an accept state gets marked and “reject” otherwise.

Context-Free Grammars

Consider the language ACFG = {⟨G,w⟩ | G is a CFG that generates string w}. As you can
probably guess, it is also decidable.

Theorem 4.1. ACFG is decidable.

1Proving that a language A is decidable is equivalent to giving an algorithm to a “yes/no” problem.
More specifically, determining whether or not a string w is in A amounts to solving the “yes/no” problem
of checking whether or not w satisfies the property that defines the set A.
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Proof (sketch). To decide ACFG, the TM can’t try every possible derivation, since it might
get stuck in an infinite loop. Instead, we know that G can be converted to Chomsky normal
form, and for any grammar in Chomsky normal form, the number of steps to generate a
string of length n is 2n−1 (Problem 2.26 in the book). So here’s a decider for ACFG: convert
G to Chomsky normal form, list all derivations with 2|w| − 1 steps, and accept if and only if
one of those derivations generate w. (This TM is not very efficient, but we’re only concerned
about decidability in this chapter — we’ll consider efficiency in later chapters.)

As was the case for DFAs, there’s also the “emptiness problem” for CFGs:

ECFG = {⟨G⟩ | G is a CFG and L(G) = ∅}.

Given a CFG G, we need to determine if the start variable of G can generate a string of
terminals. Again, we can’t try every derivation, since we might get stuck in an infinite loop.
Instead, we’ll use the marking strategy “backward” as follows: mark all terminal symbols,
keep marking any variable A such that G has a rule A → U1U2 · · ·Uk where all Ui have been
marked, and in the end, check if the start variable got marked.

Finally, we’ll end this section with the following theorem:

Theorem 4.2. Every context-free language is decidable.

Proof. Let A be a CFL, and let S be a decider for ACFG (see Theorem 4.1). Here is a TM
M that decides A: given w, convert A to a CFG G in Chomsky normal form. If S accepts
⟨G,w⟩, then M accepts; otherwise, M rejects.

To summarize, here are the relationships among the four different classes of languages
we’ve seen so far:

Regular ⊆ Context-Free ⊆ Decidable ⊆ Recognizable.

4.2 Undecidability

We’ve arrived at a philosophically important part of the book. Recall that the Church-
Turing thesis states that our understanding of computers/algorithms is captured by the
Turing machine model of computation. Yet there are languages that are not decidable by any
Turing machine, which implies that there are some problems that algorithms fundamentally
cannot solve.

We’ve seen that ADFA and ACFG are decidable; now let’s consider

ATM = {⟨M,w⟩ | M is a TM and M accepts w}.

Notice that ATM is Turing-recognizable for the same reason ADFA is decidable: given ⟨M,w⟩,
our TM simulates M on w, accepts if M accepts, and rejects if M rejects. If M loops on
w, then our TM loops as well, but that is acceptable for the purposes of recognizability.
However, a TM that potentially loops is unacceptable if our goal is to show that ATM is
decidable. The next theorem implies that this goal is impossible.

Theorem 4.3. ATM is undecidable.
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The proof uses a technique called diagonalization. We’ll skip the introduction to this
technique and jump straight into the proof, but the book contains more details and provides
an illustration of diagonalization by proving that the set of rational numbers is countable
while the set of real numbers is uncountable.

Proof. For contradiction, assume H is a TM that decides ATM. We construct a TM D that
takes as input ⟨M⟩ (the description of a TM M) and does the following:

1. Run H on input ⟨M, ⟨M⟩⟩.

2. If H accepts, reject; otherwise, accept.

Something weird happens when we call D with input ⟨D⟩. First, let’s assume D (as defined
above) accepts ⟨D⟩, which means H rejects ⟨D, ⟨D⟩⟩. But if we follow the definition of H,
that means D actually doesn’t accept ⟨D⟩, contradicting our assumption that D accepts ⟨D⟩.
On the other hand, similarly, if D rejects ⟨D⟩, then H must accept ⟨D, ⟨D⟩⟩, which means
D actually accepts ⟨D⟩. Thus, neither “D accepts ⟨D⟩” nor “D rejects ⟨D⟩” is possible, so
our initial assumption that H exists does not hold.

The proof above is complete, but it’s interesting to directly see how we’re using diago-
nalization. Suppose we order all possible TMs into a list (M1,M2, . . .). (Note that this is
possible because any TM can be encoded in a finite string, so we can start by listing all TMs
of length 1, then 2, etc.) Consider a 2-dimensional table where the i-th row and i-th column
are labeled Mi and ⟨Mi⟩, respectively. The (Mi, ⟨Mj⟩)-th entry is “accept” if H(Mi, ⟨Mj⟩)
accepts and “X” otherwise; Figure 5 illustrates an example.

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ · · · ⟨D⟩ · · ·
M1 A X A · · · A
M2 X X A · · · X
M3 A X X · · · X
...
D X A A · · · ?
...

Figure 5: The results returned by H(Mi, ⟨Mj⟩), where A stands for “accept” and X stands
for “reject or loop.”

Our TM D, built on H, appears in some row, and the proof considers whether H(D, ⟨D⟩)
accepts or rejects/loops. Since D is designed to be the opposite of H on every diagonal entry
(Mi, ⟨Mi⟩), the contradiction arises when we try to fill out the (D, ⟨D⟩)-th entry — it cannot
be the opposite of itself.

In summary, ATM is Turing-recognizable but not decidable. But there are languages that
are not even Turing-recognizable! For any language A, let A denote the complement of A
(i.e., the set of strings not in A). Furthermore, we say that A is co-Turing-recognizable if
A is Turing-recognizable. In this case, some TM M recognizes A, so M(w) accepts every
string w ̸∈ A and rejects or loops on all w ∈ A.
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Theorem 4.4. A language A is decidable if and only if A is both Turing-recognizable and
co-Turing-recognizable.

Proof. The forward direction is simpler: if A is decidable, then the decider M also recognizes
A, so A is Turing-recognizable. Furthermore, A is also decidable (the decider for A can just
output the opposite of M), so A is also Turing-recognizable, which means A is co-Turing-
recognizable.

For the backward direction, let M1 and M2 be recognizers for A and A, respectively. Here
is a TM M that decides A: on input w, run M1(w) and M2(w) in parallel. More specifically,
alternate between one step of M1 and one step of M2. If M1 accepts w, our TM M accepts;
otherwise, M rejects. Since w is either in A or A, one of the recognizers {M1,M2} accepts
w; since M accepts/rejects w accordingly, M decides A.

We know that ATM is undecidable (Theorem 4.3), and ATM is Turing-recognizable (just
simulate M on w), so Theorem 4.4 implies that ATM is not Turing-recognizable.
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5 Reducibility

In the previous chapter, we saw that ATM is undecidable (and ATM is not even Turing-
recognizable). In this chapter, we’ll see even more undecidable problems, and we’ll show
that they’re undecidable using a technique called reducibility. The idea is the following:
suppose a problem A reduces to another problem B. In that case, if we could decide (i.e.,
solve) B, we could also decide A. We are interested in the contrapositive: if A is undecidable,
then B must also be undecidable.

5.1 Undecidable Problems from Language Theory

Here’s another undecidable language:

HTM = {⟨M,w⟩ | M is a TM and M halts on w}.

(The book calls it HALTTM, but we’ll use the shorter notation HTM.) Deciding HTM is
equivalent to solving the halting problem. To prove that HTM is undecidable, we’ll use the
reduction strategy defined above. In particular, we’ll show that the task of deciding ATM

reduces to the task of deciding HTM. The following proof is a typical example of reducibility.

Theorem 5.1. HTM is undecidable.

Proof. For contradiction, suppose there exists a TM R that decides HTM. Consider the
following TM S that takes ⟨M,w⟩ as input:

1. Run R on ⟨M,w⟩.

2. If R rejects, reject.

3. Otherwise, simulate M on w and output whatever it outputs.

This TM S decides ATM, but ATM is undecidable. Thus, R cannot exist, so HTM is also
undecidable.

By reducing from ATM or any another undecidable problem, we can similarly show the
following languages are undecidable:

• {⟨M⟩ | M is a TM and L(M) = ∅}

• {⟨M⟩ | M is a TM and L(M) is regular}

• {⟨M1,M2⟩ | M1 and M2 are TMs and L(M1) = L(M2)}
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Computation Histories

Another way to prove that ATM is reducible to other languages is by using computation
histories. For any TM M and string w, a accepting computation history for M on w is a
sequence of configurations of M on w, where each configuration can follow from the previous
one and the final configuration is in the accept state. (A rejecting computation is defined
analogously.) If M doesn’t halt on w, then there’s no computation history for M on w. So
if M is deterministic, there exists at most one computation history for M on w. (Otherwise,
there can be many computation histories, each corresponding to a computation branch.)

The reduction we’ll give involves a linear bounded automata (LBA), which is a Turing
machine that is not allowed to move its tape head off the portion of the tape containing
the input. Many deciders that we’ve seen, including the ones for ADFA and ACFG, are LBAs.
Theorem 5.9 in the book states that ALBA = {⟨M,w⟩ | M is an LBA that accepts string w},
unlike ATM, is decidable. The idea is that M can only enter a finite number of configurations
because its tape head only has |w| possible locations. This allows us to determine M ’s
behavior on w (accept, halt, or loop) by simulating M on w for only a finite number of steps.

Now consider the following language:

ELBA = {⟨M⟩ | M is an LBA and L(M) = ∅}.
We’ll prove that ELBA is undecidable using the computation history method.

Theorem 5.2. ELBA is undecidable.

Proof. For contradiction, assume there exists a TM R that decides ELBA. For an TM M
and string w, we’ll show how to construct an LBA B such that L(B) is the set of accepting
computation histories for M on w. If we can construct a B with this property, then we’d
have a TM that decides ATM:

1. Construct B using M and w.

2. Run R on ⟨B⟩ and output the opposite of R.

Now we construct the LBA B. Given any string x, B needs to determine if x is an accepting
configuration history for M on w. Recall that at any point in a TM’s calculation, its
configuration consists of a state, a location on the tape head, and the contents of the tape.
By scanning x, B can determine if the following conditions hold:

1. In x, the first configuration of M is in the initial state of M , w is on the tape, and the
tape head is at the beginning of w.

2. Each configuration Ci+1 follows from the previous one Ci according to the transition
function δ of M . We can determine this by zig-zagging across Ci+1 and Ci and checking
that all symbols in the corresponding positions are the same, except for the ones under
and adjacent to the tape head in Ci — those should change according to δ. We can
keep track of our positions while zig-zagging by replacing any symbol a with ȧ, as we
did to simulate a multitape TM (see Chapter 3).

3. The final configuration of M in x is in the accept state.

Using the computation history method, we can also prove that the language {⟨G⟩ |
G is a CFG and L(G) = Σ∗} is undecidable (Theorem 5.13 in the book).
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5.2 A Simple Undecidable Problem

So far, we have primarily focused on “meta” problems that themselves are about DFAs,
CFGs, TMs, etc. In this section, we’ll consider an undecidable problem that is less “meta”
— it is called the Post Correspondence Problem (PCP). The input is a set of dominos, such
as the following (this example is from the book):{[

b

ca

]
,
[ a

ab

]
,
[ca
a

]
,

[
abc

c

]}
Each domino consists of a string on the top and a string on the bottom. Our goal is to select
and order a subset (repetition allowed) of the dominos such that the string on the top is
equal to the string on the bottom, i.e., the two strings match. In the example above, there
is a match containing 5 dominos where the final string is abcaaabc.

Theorem 5.3. PCP is undecidable.

Proof (sketch). The proof is a reduction from ATM to PCP via computation histories. That
is, for any TM M and string w, we will construct a set of dominos P such that a match in P
is an accepting computation history for M on w. The strings on the dominos represent the
configurations of M , and these strings are defined in a way that correspond to the steps of
M . For example, some dominos represent M moving its tape head to the right, while others
represent M moving its tape head to the left. Given these various types of dominos in the
set P , finding a match in P becomes equivalent to finding an accepting computation history
for M on w.

5.3 Mapping Reducibility

We have already seen a few reductions; they often begin by assuming there exists a TM M
that decides some language, and using M to build a TM that “decides” an undecidable like
ATM. In this section, we formalize this idea.

First, we say a function f : Σ∗ → Σ∗ is computable if some TM, on every input w, halts
with just f(w) on its tape.1 The set of computable functions includes pretty much everything
we’re familiar with: arithmetic operations on integers, slightly modifying the description of
a Turing machine, etc. We say a language A is mapping reducible to a language B (denoted
by A ≤m B) if there exists a computable function f : A → B (called the reduction from A
to B) such that for every string w, w ∈ A if and only if f(w) ∈ B.

This definition of reducibility is a stronger notion our intuitive understanding of “reduc-
ing” one task to another. That is, if A ≤m B and B is decidable by some TM M , then A is
decidable: given w, compute f(w), and return the output of running M on f(w). However,
in the intuitive understanding of “reduction,” we’re allowed to call the TM that decides B
in various ways, not just at the end.

1This definition exists for rather technical reasons that the book doesn’t discuss extensively. Basically, the
purpose is to exclude functions that Turing machines cannot actually compute, such as solving the halting
problem.
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Undecidability of HTM (alternative proof). To prove undecidability, as we have done,
we use the contrapositive: if A ≤m B and A is undecidable, then B is undecidable. For
example, let’s show HTM is undecidable again (see Theorem 5.1). We know that ATM is
undecidable (see Theorem 4.3), so it suffices to show ATM ≤m HTM. The function f takes
as input a string representing a TM M and string w, and it outputs a string representing a
TM M ′ and the same string w. The TM M ′ runs M on x, accepts if M accepts, and loops
if M rejects. Notice that M accepts w if and only if M ′ halts on w, as desired. (If the input
to f is not a valid input to ATM, f can output any string not in HTM.)

Unrecognizablity. Similarly, if A ≤m B and A is not Turing-recognizable, then B is not
Turing-recognizable. Now consider the following language:

EQTM = {⟨M1,M2⟩ | M1 and M2 are TMs and L(M1) = L(M2)}.

Theorem 5.4. EQTM is neither Turing-recognizable nor co-Turing recognizable.

Proof. First, we’ll show ATM ≤m EQTM, which implies ATM ≤m EQTM, which implies EQTM

is not Turing-recognizable. The function f is the following: given ⟨M,w⟩, return ⟨M1,M2⟩
where M1 always rejects and M2 runs M(w) and accepts (whatever its input is) if M accepts
w. Notice that f is indeed a reduction: If M accepts w, then w ∈ L(M2) while L(M1) = ∅,
so ⟨M1,M2⟩ ∈ EQTM. Conversely, if M doesn’t accept w, then L(M1) = L(M2) = ∅, so
⟨M1,M2⟩ ∈ EQTM.

Now we show ATM ≤m EQTM, which implies EQTM is not Turing-recognizable. The
function g is identical to f , except M1 always accepts. Notice that L(M1) contains all
strings, and M accepts w if and only if L(M2) contains all strings.
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6 Advanced Topics in Computability Theory

[unfinished]

6.1 The Recursion Theorem

[unfinished]

6.2 Decidability of logical theories

[unfinished]

6.3 Turing Reducibility

[unfinished]

6.4 A Definition of Information

[unfinished]
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7 Time Complexity

So far, we have been concerned with classifying languages as recognizable and/or decidable
under various models of computation. The last part of the book is about complexity theory,
the investigation of the time, memory, or other resources required to solve computational
problems. We let N = {1, 2, . . .} denote the set of natural numbers.

7.1 Measuring Complexity

The “running time” of an algorithm is the number of steps it takes in the worst case, as a
function of the input length. More formally, if M is a deterministic TM, the running time
(or time complexity) of M is a function f : N → N , where f(n) is the maximum number of
steps that M takes on any input of length n.

Example. Consider the following TM M that decides A = {0n1n | n ≥ 0}: on input w,

1. Scan w and reject if a 0 appears after a 1.

2. While the tape has at least one 0 and one 1: scan w and cross off a 0 and a 1.

3. If there are no 0s but at least one 1 left, reject. If there are no 1s but at least one
0 left, reject. If nothing is left, accept.

We analyze the running time of TMs without delving into the implementation details (states,
transition functions, etc.). In fact, we will use asymptotic notation, which further simplifies
our analyses.1 Step 1 above takes O(n) steps, where n = |w| denotes the input length.
Repositioning the head back to the beginning of the tape takes another O(n) steps. In Step
2, each scan takes O(n) steps, and the number of scans is O(n) because each scan reduces
the number of remaining symbols by 2. Finally, Step 3 is a single scan that takes O(n) steps.
So the total running time is O(n) +O(n2) +O(n) = O(n2).

For any function t : N → N , we let TIME(t(n)) denote the collection of languages that
are decidable by an O(t(n))-time TM. Thus, the analysis above shows that A ∈ TIME(n2).
The book gives a more sophisticated TM decides A in O(n log n) time. With a second tape,
we can decide A in O(n) time: copy the 0s to the second tape, and match them with the 1s.

Relationships Among Models

The time complexity of a language depends on the model of computation. We consider three:
single-tape TM, multitape TM, and nondeterministic TM.

Theorem 7.1. For every function t satisfying t(n) ≥ n for all n, every t(n)-time multitape
TM has an equivalent O(t2(n))-time single-tape TM.

1The book contains the formal definition of asymptotic notation; if you’ve taken other computer science
courses, you might be familiar with it already.
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Proof (sketch). In Section 3.2, we showed how a single-tape TM S can simulate a multitape
TM M : concatenate all of M ’s tape contents on S’s tape, separate each tape with a special
symbol, and track the corresponding tape head locations. The TM S can simulate a single
step of M by scanning and adjusting its tape in O(t(n)) time, since the total length of all of
M ’s tapes is O(t(n)). Since M takes O(t(n)) time, S takes O(t2(n)) time.

Now we consider an analogous result for nondeterministic TMs. (Recall that a nonde-
terministic TM is a decider if every branch halts on every input.) The running time of a
nondeterministic TM is defined as the maximum number of steps it uses on any branch.

Theorem 7.2. For every function t satisfying t(n) ≥ n for all n, every t(n)-time nondeter-
ministic TM has an equivalent 2O(t(n))-time deterministic single-tape TM.

Proof (sketch). Again, recall the simulator from Section 3.2: if N is a nondeterministic TM,
our deterministic TM M can simulate N by trying each node of N ’s computation tree using
breadth-first search. Every branch has length at most t(n), so if each node has at most b
children, the number of nodes is O(bt(n)). Since M can travel to any node from the root
in O(t(n)) time, its total running time is O(t(n)bt(n)) = 2O(t(n)). (This last equality holds
if b < 2k for some constant k: t(n)bt(n) < 2t(n)2kt(n) = 2O(t(n)).) By Theorem 7.1, we can

convert M to a single-tape TM whose running time is
(
2O(t(n))

)2
= 2O(2t(n)) = 2O(t(n)).

7.2 The Class P

In the previous section, we saw that with respect to running times, the advantage of multiple
tapes is at most polynomial, while the advantage of nondeterminism is at most exponential.
In fact, all “reasonable” deterministic models of computation are equivalent up to polyno-
mials. This motivates the following definition: we let P denote the class of languages that
are decidable in polynomial time on a deterministic single-tape TM, i.e., P = ∪kTIME(nk).
Generally speaking, problems in P (i.e., languages that can be decided in polynomial time)
tend to be realistically solvable.2 This includes the a significant fraction of algorithms studied
in a typical introductory course on algorithms (e.g., BFS, DFS, Kruskal’s, Dijkstra’s).

Example. Consider the following language:

PATH = {⟨G, s, t⟩ | G is a directed graph that has a path from s to t}.

To show that PATH ∈ P, we give a polynomial-time algorithm that decides PATH. Breadth-
first search is sufficient: mark s, keep marking out-neighbors of marked vertices until no
additional vertices are marked, and check if t is marked. If m is the number of vertices
in G, then the algorithm makes at most m marks, and each mark takes mk time for some
constant k. The book excludes many details, but hopefully it’s clear that this algorithm
runs in polynomial time.

Now let’s show that an entire class of languages is in P:

2It might seem like the difference between n and n100 is quite big, but by ignoring this difference, we
free ourselves from needing to track various details (e.g., the exact movement of heads on tapes). This is
analogous to ignoring the difference between n and 100n in asymptotic notation.
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Theorem 7.3. Every context-free language is in P.

Proof (sketch). Let A be a CFL; recall that A is decidable (see Theorem 4.2). The decider
for A relies on converting A to an equivalent grammar G in Chomsky normal form, listing a
number of derivations, and checking if any of them produce the input string. The problem
is that the number of derivations could be exponential, but we can turn to dynamic pro-
gramming. Roughly speaking, this allows us to reduce the running time to polynomial by
searching through the list of derivations more efficiently.

7.3 The Class NP

Many optimizations problems can be solved in exponential time by using brute force, and
some problems can be solved in polynomial time. But for many other problems, we do not
know if there exists a polynomial-time algorithm that solves the problem. However, it is
often the case that we can efficiently verify that a proposed solution is indeed a solution.
For example, consider the following language:

HamPath = {⟨G, s, t⟩ | G is a directed graph with a Hamiltonian path from s to t},

where a Hamiltonian path is a path that includes every vertex exactly once. It is relatively
easy to verify that a path P is Hamiltonian in polynomial time: just check that P starts at
s, ends at t, and includes every vertex exactly once. However, it is not known whether a
Hamiltonian path can be found in polynomial time.

This phenomenon — (seemingly) difficult to solve, but easy to verify — is a core concept
in complexity theory. More formally, a verifier for a language A is an algorithm V such that

A = {w | V accepts ⟨w, c⟩ for some string c}.

The running time of V is only a function of |w|, and the string c is known as a certificate or
proof of membership in A. The certificate can often be thought of as a “proposed solution”
(e.g., for HamPath, c could just be a Hamiltonian path from s to t). NP is the class of
languages that have polynomial-time verifiers.

The name “NP” is short for “nondeterministic polynomial-time” because there’s an al-
ternative definition based on nondeterministic Turing machines. (Recall that the running
time of a nondeterministic TM is the number of steps in the longest computation branch.)
In particular, we have the following theorem:

Theorem 7.4. A language A is in NP if and only if there exists a nondeterministic polynomial-
time TM that decides A.

Proof (sketch). Suppose A ∈ NP, and let V be a polynomial-time verifier for A, so for any
string w, V runs in time nk for some value k. Here is a nondeterministic TM that decides
A: on input w, nondeterministically select a string c of length at most nk, run V on ⟨w, c⟩,
accept if V accepts, and reject otherwise.

Conversely, if an NTM N decides A, we can design a verifier V that works as follows: on
input ⟨w, c⟩, simulate N on w, interpreting each symbol in c as a description of the nonde-
terministic choice that N should make at each step. (The details are similar to simulating
a nondeterministic TM using a deterministic TM; see Theorem 3.16 in the book.) Accept if
this branch of N accepts; otherwise, reject.
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The class coNP. Every problem A ∈ NP has a complement problem A; we let coNP de-
note the collection of languages that are complements of languages in NP. For example, the
problem HamPath requires us to decide if a given graph does not have a Hamiltonian path.
This problem is not obviously in NP, since it is not clear what kind of certificate could show
that a graph does not have a Hamiltonian path. People generally believe that NP ̸= coNP,
but this has not been proven.

The nondeterministic version of TIME(t(n)) is NTIME(t(n)), the collection of languages
that are decidable by an O(t(n))-time NTM. So P = TIME(t(n)), NP = ∪kNTIME(nk),
and P ⊆ NP. As the book puts it, “The question of whether P = NP is one of the
greatest unsolved problems in theoretical computer science and contemporary mathematics.”
However, it is known that NP ⊆ EXPTIME = ∪kTIME(2n

k
), i.e., if a problem is verifiable

in polynomial time, then it is solvable in exponential time. This captures the notion that
problems in NP (e.g., HamPath) can be solved using brute force.

7.4 NP-completeness

Remark. The book does not define “NP-hard” in the main content (though it does in one
of its problems), but it’s a useful term, so we’ll include it in these notes.

Here is a rough overview of the picture so far: problems in P are easy to solve, while some
problems in NP, including HamPath, seem hard to solve. Nobody has been able to prove
that HamPath is actually hard, but we can definitively state that HamPath is harder than
some other problem X. If X is known to be seemingly hard, and HamPath is definitively
harder than X, then this is evidence that HamPath is also hard.

To compare the hardness of problems, we use the notion of mapping reducibility from
Section 5.3, but we restrict ourselves to polynomial time. More formally: A language A
is polynomial-time mapping reducible (or simply polynomial-time reducible) to a language
B if there exists a function f : Σ∗ → Σ∗ such that, for every string w, w ∈ A if and only
if f(w) ∈ B. This function f is known as a polynomial-time reduction from A to B, and
there needs to exist a TM that computes f in polynomial time. We write A ≤P B if A is
polynomial-time reducible to B.

Theorem 7.5. If A ≤P B and B ∈ P, then A ∈ P.

Proof. Let f be a polynomial-time reduction from A to B, and let M be a polynomial-time
algorithm that decides B. The following algorithm decides A in polynomial time: on input
w, compute f(w), and output M(f(w)).

A language B is NP-hard if A ≤P B for every problem A ∈ NP, and B is NP-complete
if B ∈ NP and B is NP-hard. So if B is NP-complete and B ∈ NP, then P = NP.

Theorem 7.6. If A ≤P B and A is NP-hard, then B is NP-hard.

Proof. Consider any problem C ∈ NP; we want to show C ≤P B. Since A is NP-hard, we
know there exists a polynomial-time reduction from C to A. Combining this reduction with
the one from A to B yields a polynomial-time reduction from C to B.
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Remark. The previous two theorems can be interpreted as follows: suppose A ≤P B.
Let’s overload notation and also let A (similarly for B) denote a binary “hardness value”
of problem A, where A = 0 means we know that A is solvable in polynomial time, and
A = 1 means we don’t know if A is solvable in polynomial time. Under this interpretation,
the inequality A ≤ B must hold. More specifically, Theorem 7.5 states that B = 0 implies
A = 0 (i.e., if B is easy then A is easy), and Theorem 7.6 states that A = 1 implies B = 1
(i.e., if A is hard then B is hard).

So Theorem 7.6 tells us that to prove a problem B is NP-hard, we can do the following:
find a problem A that is known to be NP-hard and prove A ≤P B. But how do we prove
that a problem is NP-hard without relying on the NP-hardness of another problem? We
address this question in the remainder of this section.

The Cook-Levin Theorem

The satisfiability problem is the following: the input is a Boolean formula containing variables
and the operations ∧ (and), ∨ (or) and ¬ (not); we use x to denote the negation of x. For
example, ϕ = (x ∨ y) ∨ (x ∧ z) is a Boolean formula containing three variables. A Boolean
formula ϕ is satisfiable if there exists an assignment of each variable to either 0 or 1 such
that ϕ evaluates to 1, where 0 is interpreted as false and 1 is interpreted as true. In
our example, ϕ is satisfiable because the assignment (x, y, z) = (0, 1, 0) makes ϕ = 1. The
language SAT is defined as

SAT = {⟨ϕ⟩ | ϕ is a satisfiable Boolean formula}.

The following theorem is named after Stephen Cook and Leonid Levin, two pioneers in
complexity theory:

Theorem 7.7. SAT is NP-complete.

Proof (sketch). Let A be any language in NP; we need to show A ≤P SAT. That is, we need
to give an algorithm that converts every string in A (and no other strings) to a satisfiable
Boolean formula. Since A ∈ NP, there exists an NTM N that decides A in nk time for
some constant k. The high-level intuition is that the operations ∧,∨,¬ allow us to build a
primitive “computer,” which we can use to build a Boolean formula based on N and w.

More specifically, we represent each computation branch of N using a table of size nk×nk;
each row represents a configuration of N on w. Our formula ϕ has variables based on the
cell indices in the table, N ’s set of states, and N ’s tape alphabet. It is possible to combine
these variables into ϕ such that a satisfying assignment for ϕ corresponds to an accepting
tableau for N on w. The details are quite involved, so we omit them.

We now describe a well-known special case of SAT known as 3SAT. A literal is either a
variable or its negation, and a clause is several literals joined by ∨s. In 3SAT, the input is a
Boolean formula that is several clauses, each containing exactly three literals, joined by ∧s.
For example, the formula

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4)
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contains four variables, two clauses, and is an element of 3SAT. Although 3SAT seems easier
to solve than SAT since the set of possible inputs is restricted, this is not actually the case.

Theorem 7.8. 3SAT is NP-complete.

Proof (sketch). The proof of Theorem 7.7 produces a Boolean formula ϕ that is almost in
the correct format (i.e., the ∧ of clauses, where each clause has exactly three literals). We
can modify ϕ until the resulting Boolean formula is in the form for 3SAT without affecting
the truth value of ϕ. We omit the details, but as an example, suppose ϕ contains C =
(a1 ∨ a2 ∨ a3 ∨ a4) as a clause (where each ai is a literal), and consider replacing C with
C ′ = (a1 ∨ a2 ∨ z) ∧ (z ∨ a3 ∨ a4). It is relatively straightforward to see that C is satisfiable
if and only if C ′ is satisfiable.

7.5 Additional NP-complete Problems

This section of the book proves that various problems, including HamPath, are NP-complete.
Generally speaking, showing that a problem B is in NP is rather straightforward: simply
describe a polynomial-time algorithm that verifies that a proposed solution to B is indeed a
solution. The more difficult part is proving that B is NP-hard. The book typically does this
by showing 3SAT ≤P B, but any NP-hard problem can play the role of 3SAT. For example,
the book shows that the undirected version of HamPath is NP-hard via a reduction from the
directed version.
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8 Space Complexity

The last chapter was about time complexity; this one is about space. If M is a deterministic
TM that halts on all inputs, the space complexity of M is the function f : N → N where
f(n) is the maximum number of tape cells that M scans on any input of length n. If M is
nondeterministic, f(n) is the maximum number of tape cells M scans on any branch. We
also have the classes SPACE(f(n)), the collection of languages decided by an O(f(n))-space
deterministic TM, and NSPACE(f(n)), the collection of languages decided by an O(f(n))-
space nondeterministic TM.

Example. Although nobody knows how to solve SAT in polynomial time, SAT is solvable
in linear space by the brute-force algorithm: simply try every truth assignment. We can
store any assignment in O(m) space, where m is the number of variables in the input, so
this TM requires O(n) space, where n is the length of the input.

8.1 Savitch’s Theorem

Nondeterministic TMs seem to have a large advantage over deterministic TMs with respect
to time. Savitch’s theorem, stated below, implies that the same does not hold with respect
to space.

Theorem 8.1. For every function f satisfying f(n) ≥ n for all n, NSPACE(f(n)) ⊆
SPACE(f 2(n)).

Proof (sketch). Let N be an O(f(n))-space NTM that decides a language A; our goal is to
simulate N using a deterministic TM M . One natural approach is for M to try every branch
in N ’s computation tree, one at a time. The problem is that a branch that uses f(n) space
may run for 2O(f(n)) steps, so tracking the information we’d need would require 2O(f(n)) space.

Instead, we can save space by using a recursive, divide-and-conquer approach. Basically,
on input w, M determines if N accepts w by recursively searching for a path P from the
starting configuration to an accepting configuration. To find P , M joins two shorter paths,
and when computing those shorter paths, M can reuse its tape to save space.

8.2 The Class PSPACE

The space analog of P is PSPACE = ∪kSPACE(n
k). We can define NPSPACE analogously,

but by Savitch’s theorem, PSPACE = NPSPACE since the square of a polynomial is also
a polynomial. Notice P ⊆ PSPACE and NP ⊆ NPSPACE because any TM can only
explore a single new cell in each time step. Furthermore, an f(n)-space TM has at most
f(n)2O(f(n)) configurations, none of which can be repeated if the TM halts, so its running
time is f(n)2O(f(n)).1 In summary, we know that

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME,

1We must assume f(n) ≥ n. Otherwise, for example, an O(1)-space TM could run for n steps. We’ll
revisit this assumption in Section 8.4.
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and we don’t know if any of the containments is actually an equality. In Chapter 9, we’ll
prove P ̸= EXPTIME so at least one of the containments is proper, and most researchers
believe that all of them are proper.

8.3 PSPACE-completeness

The notion of completeness also applies to space complexity: a language B is PSPACE-hard
if every problem in PSPACE is polynomial-time reducible to B, and B is PSPACE-complete
if B is PSPACE-hard and B ∈ PSPACE.

The TQBF Problem

The TQBF problem is a generalization of SAT. A quantified Boolean formula (QBF) is a
Boolean formula that also can contain multiple quantifiers ∀ (for all) and ∃ (there exists).
For example,

ϕ = ∀x ∃y [(x ∨ y) ∧ (x ∨ y)]

is a true QBF (y = x makes ϕ = 1). It is also fully quantified because every variable appears
within the scope of some quantifier. The TQBF problem is the following:

TQBF = {⟨ϕ⟩ | ϕ is a true fully quantified Boolean formula}.

Theorem 8.2. TQBF is PSPACE-complete.

Proof (sketch). We can decide TQBF in polynomial space by using a recursive brute-force
algorithm; the space required is O(m), where m is the number of variables in ϕ.

Now let A be a language decidable by an nk-space TM M ; we want to show A ≤P TQBF.
One idea is to use the approach we used to prove SAT is NP-hard (Theorem 7.7), but the size
of the tableau could be exponential in nk because M can run for exponential time. Instead,
we can use a technique related to the divide-and-conquer approach used to prove Savitch’s
theorem (Theorem 8.1): construct ϕ by assembling several parts in a recursive manner.

Winning Strategies for Games

At this point, the book introduces a couple of games and shows that they are PSPACE-
complete:

• Formula game: There is a quantified Boolean formula, and two players alternate
assigning variables to values. Player 1’s goal is to make the formula true, while
Player 2’s goal is to make the formula false. It turns out that deciding whether
Player 1 has a winning strategy is equivalent to deciding TQBF.

• Generalized Geography: There is a directed graph G, and two players alternate
picking vertices in G. The chosen vertices must collectively form a path in G (i.e.,
no vertex can be chosen more than once); the first player to get “stuck” loses. The
book proves that this game is PSPACE-hard via a reduction from the formula game
described above.
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More familiar games, such as chess, checkers, and GO, typically involve only a finite number
of states, so finding a winning strategy only requires a finite amount of resources. However,
generalizations of these games have been studied, and they have been shown to be PSPACE-
hard (or even harder, depending on the details of the generalization).

8.4 The Classes L and NL

So far, we have only considered TMs that use at least n space (where n is the input size)
but we can also consider TMs that use less space. (TMs that use less than n time steps
cannot even read the entire input.) Our computation model is now a TM with two tapes:
the first is a read-only input tape, and the second is the usual read/write work tape. Only
cells scanned on the work tape count towards the space complexity. This model captures
the scenario in which the input is too large to be stored in our main memory. We’ll focus
on the following two classes: L = SPACE(log n), NL = NSPACE(log n).2

Example. Consider the language {0k1k | k ≥ 0}: we can decide this language by checking
that no 1 appears before a 0, then counting the number of 0s and 1s. Each counter uses
O(log n) space, so this language is in L.

Example. Recall the following language:

PATH = {⟨G, s, t⟩ | G is a directed graph that has a path from s to t}.

In Section 7.2, we showed that PATH ∈ P since we can use breadth-first search, but this
algorithm requires linear space. We don’t know if PATH is in L, but we can show that
PATH ∈ NL: an NTM can nondeterministically guess the vertices on the path from s to t
while keeping track of just the current vertex. It accepts if it reaches t and rejects if hasn’t
reached t in m steps, where m is the number of vertices in G.

In Section 8.2, we claimed that an f(n)-space TM runs in time f(n)2O(f(n)) but assumed
f(n) ≥ n. To address this assumption, we define a configuration of our new model to be
the following: it is a setting of the state, the work tape, and the positions of the two tape
heads. In particular, the input is not part of the configuration. Under this definition, an
f(n)-space TM has n2O(f(n)) configurations; the details are in the book. Savitch’s theorem
(Theorem 8.1) also holds if we assume f(n) ≥ log n rather than f(n) ≥ n, and the proof is
similar.

8.5 NL-completeness

As mentioned in the previous section, we know that PATH is in NL but we don’t know if
PATH is in L. In fact, we don’t know if there are any problems in NL \ L (just as we don’t
know if there are any problems in NP \ P).

2The reasons for choosing log n rather than, say,
√
n, are similar to the reasons for considering polynomial

time when defining P and NP: practical considerations, mathematical properties, etc. One way to think
of logarithmic space is to consider algorithms that have a fixed number of input pointers, since a pointer
requires logarithmic space.
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We can define NL-completeness the same way we did for NP-completeness: a problem
B is NL-complete if B ∈ NL and every problem A ∈ NL reduces to B. However, the
reduction from A to B must be a log-space reduction.3 This means that the TM computing
the reduction has three tapes: a read-only input tape, a write-only output tape, and a
read/write work tape. The head on the write-only tape cannot move leftward, and the work
tape may only contain O(log n) symbols. We use A ≤L B to denote that A is log-space
reducible to B.

Theorem 8.3. If A ≤L B and B ∈ L, then A ∈ L.

Proof (sketch). Let f denote the reduction from A to B. We could mimic the proof of
Theorem 7.5, but f(w) might be too large to fit in the log space bound. Instead, A’s TM
MA can run B’s machine MB on f(w), and while MA simulates MB, it recomputes f(w) only
when necessary, and it only stores the symbol it needs. That is, whenever MB takes a step,
MA computes f(w) to find the symbol in f(w) that MB needs and discards the rest of f(w).
This approach allows MA to reduce its space complexity by raising its time complexity.

Just as 3SAT is NP-complete, PATH is NL-complete:

Theorem 8.4. PATH is NL-complete.

Proof (sketch). In the previous section, we showed PATH ∈ NL, so it suffices to show A ≤L

PATH for any A ∈ NL. The idea is fairly intuitive: given a TM M that decides A, we can
build a graph G whose vertices represent the configurations of M on input w and edges
represent valid steps that M can take. Determining if M accepts w is equivalent to finding
a path from the vertex representing the start configuration to the vertex representing the
accept configuration.

Corollary 8.5. NL ⊆ P.

Proof (sketch). Suppose A ∈ NL; Theorem 8.4 implies that A is log-space reducible to
PATH. As mentioned in Section 8.4, an f(n)-space TM has n2O(f(n)) configurations; this
implies that a log space reducer runs in polynomial time. Therefore, since we can solve
PATH in polynomial time, we can also solve A in polynomial time.

8.6 NL equals coNL

As mentioned in Section 7.3, people generally believe that NP ̸= coNP. But this does not
hold for NL and coNL:

Theorem 8.6. NL ̸= coNL.

Proof (sketch). Recall that PATH is NL-complete (Theorem 8.4), which implies PATH is
coNL-complete. It suffices to show PATH ∈ NL because that implies coNL ⊆ NL, which
implies coNL = NL.

3As we’ll see, every problem in NL is solvable in polynomial time, so any two problems in NL (excluding
∅ and Σ∗) are polynomial-time reducible to each other.
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First, suppose we know c, the number of vertices in G that are reachable from s. The
TM M essentially does the following: nondeterministically guess whether each vertex u is
reachable from s, and verify each guess for vertex u by nondeterministically finding a path
from s to u. If M ever finds exactly c vertices reachable from s, and t is not one of these c
vertices,M accepts. To calculate c, it uses a similar nondeterministic guessing procedure.

Let’s incorporate L and NL into our summary:

L ⊆ NL = coNL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME.

Again (see Section 8.2), we don’t know if any of the containments are proper, but in Chapter
9, we’ll prove NL ⊊ PSPACE.
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9 Intractability

Recall that P ⊆ NP, and some problems in NP seem intractable (e.g., 3SAT), but nobody
has been able to prove this. In this chapter, we’ll prove that some problems truly are harder
than others.

9.1 Hierarchy Theorems

Space Hierarchy Theorem

A function f : N → N that is at least O(log n) is space constructible if the function that
maps 1n to the binary representation of f(n) is computable in O(f(n)) space.1 The following
is the space hierarchy theorem:

Theorem 9.1. For any space computable function f , there exists a language A that is
decidable in O(f(n)) space but not o(f(n)) space.

Proof (sketch). We’ll give an algorithm D that describes the desired language A. In par-
ticular, D runs in O(f(n)) space and ensures that A is not decidable in o(f(n)) space. To
design D, we’ll use diagonalization (see Section 4.2): for any TM M , A will differ from M ’s
language in the spot ⟨M⟩. That is, suppose D receives ⟨M⟩ as input. (If the input does
not describe a TM, D simply rejects.) Then D runs M on ⟨M⟩ within f(n) space, and D
accepts if and only if M rejects. There are some missing details, but this basically ensures
that D’s language is different from M ’s.

As a corollary, for any two natural numbers c1 < c2, we have SPACE(n
c1) ⊊ SPACE(nc2).

In fact, this statement holds even if c1 and c2 are real numbers (and c1 ≥ 0). We can also
obtain a separation result between two complexity classes we’ve seen:

Corollary 9.2. NL ⊊ PSPACE.

Proof. By Savitch’s theorem (Theorem 8.1), NL ⊆ SPACE(log2 n), and Theorem 9.1 implies
SPACE(log2 n) ⊊ SPACE(n).

Since TQBF is PSPACE-complete with respect to log space reducibility, the corollary
above implies TQBF ̸∈ NL. The space hierarchy theorem also implies separation between
PSPACE and EXPSPACE = ∪kSPACE(2

nk
).

Time Hierarchy Theorem

The time hierarchy theorem is slightly weaker (by a logarithmic factor) than its space analog
from earlier in this section. We still start with a technical definition: a function t : N → N
that is at least O(n log n) is time constructible if the function that maps 1n to the binary
representation of t(n) is computable in O(t(n)) time.

Theorem 9.3. For any time constructible function t, there exists a language A that is
decidable in O(t(n)) time but not in o(t(n)/logt(n)) time.

1As was the case with computable functions, we’re working with space constructible functions for rather
technical reasons that are not essential to fully understand.
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Proof (sketch). The proof is similar to that of the space hierachy theorem: we’ll design an
O(t(n))-time algorithm D that decides the desired language A using the diagonalization
method. Keeping track of the number of steps that D has spent results in the logarithmic
factor overhead.

From the time hierarchy theorem, we can conclude TIME(nc1) ⊊ TIME(nc2) for any real
numbers 1 ≤ c1 < c2, and P ⊊ EXPTIME.

Exponential Space Completeness

[unfinished]

9.2 Relativization

[unfinished]

9.3 Circuit Complexity

[unfinished]
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10 Advanced Topics in Complexity Theory

[unfinished]

10.1 Approximation Algorithms

[unfinished]

10.2 Probabilistic Algorithms

[unfinished]

10.3 Alternation

[unfinished]

10.4 Interactive Proof Systems

[unfinished]

10.5 Parallel Computation

[unfinished]

10.6 Cryptography

[unfinished]
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