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Preface

These notes cover topics in discrete mathematics at a standard undergraduate level. They do not
assume familiarity with anything beyond elementary algebra. I recommend the textbooks below
for further reading; these notes are primarily based on them:

• Discrete Mathematics with Applications by Epp

• Building Blocks for Theoretical Computer Science by Fleck

• Discrete Mathematics: An Open Introduction by Levin

• Connecting Discrete Mathematics and Computer Science by Liben-Nowell

• Discrete Mathematics and Its Applications by Rosen

• A Transition to Advanced Mathematics by Smith, Eggen, and St. Andre

• Reasoning and Writing in the Mathematics Underlying Computation by Snoeyink

Of course, there are many other excellent textbooks and resources not listed above, and I encourage
you to seek them out.

— Kevin Sun
Last updated: January 2025
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1 Logic and Proofs

One of the primary goals of mathematics is to prove true statements. To do this, we need to be
familiar with the precise language and model of reasoning used in mathematics.

1.1 Propositional Logic

A proposition is a statement that is either true or false. For example, “1 + 2 = 3” and “1 + 2 = 4”
are propositions, but “x+2 = 3” and “Is 2 an odd integer?” are not. If p is a true proposition, then
its truth value is T; otherwise, its truth value is F. If p and q are propositions, then we can combine
them to form various other propositions:

proposition notation truth value

not p ¬p if p is true: T; else: F

p or q p ∨ q if p is true and/or q is true: T; else: F

p and q p ∧ q if p is true and q is true: T; else: F

p implies q p ⇒ q if p is true and q is false: F; else: T

p iff (if and only if) q p ⇔ q if p and q have the same truth value: T; else: F

There are many ways to say “p implies q,” including “If p, then q,” “p only if q,” “p is sufficient
for q,” and “q is necessary for p.” In the proposition p ⇒ q, the hypothesis is p and the conclusion
is q. Notice that p ⇒ q is true if p is false; in this case, we say that p ⇒ q is vacuously true. For
example, “If 1 + 1 = 3, then 2 + 2 = 5” is vacuously true.

Eequivalent Propositions

A truth table helps us understand complicated propositions. It has one row for each possible
combination of truth values of the “base” propositions; each column lists the corresponding truth
values of the complicated proposition. A proposition is a tautology if its entire column is T; it is
a contradiction if its entire column is F. If propositions p and q have identical columns in a truth
table, then they are equivalent and we write p ≡ q. For example, the truth table below shows that
p ⇔ q ≡ (p ⇒ q) ∧ (q ⇒ p).

p q p ⇔ q p ⇒ q q ⇒ p (p ⇒ q) ∧ (q ⇒ p)

T T T T T T

T F F F T F

F T F T F F

F F T T T T

We can similarly show that p ⇒ q is equivalent to its contrapositive ¬q ⇒ ¬p. The converse of
p ⇒ q is q ⇒ p; it is equivalent to the inverse of p ⇒ q, which is ¬p ⇒ ¬q. We also note that
p ⇒ q ≡ ¬p∨ q. Finally, De Morgan’s Laws state that ¬(p∨ q) ≡ ¬p∧¬q and ¬(p∧ q) ≡ ¬p∨¬q.
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Practice 1.1. Write a truth table that shows the following:

1. p ⇒ q ≡ ¬q ⇒ ¬p

2. p ⇒ q ≡ ¬p ∨ q

3. ¬(p ∨ q) ≡ ¬p ∧ ¬q

4. ¬(p ∧ q) ≡ ¬p ∨ ¬q

Practice 1.2. Is p ⇒ q equivalent to q ⇒ p? Explain your answer using a truth table.

Highlight. In ordinary English, we sometimes say p ⇒ q when we actually mean p ⇔ q.
For example, suppose Alice says, “If I like the book, then I’ll watch the movie,” and later,
we find out that she watched the movie. From a logical perspective, we cannot conclude that
she liked the book, but from a colloquial perspective, that might be a reasonable conclusion.

1.2 Predicates and Quantifiers

A predicate is a proposition whose truth value depends on the values of certain variables. Thus,
one way to turn a predicate into a proposition is by setting every variable to a specific value. For
example, consider the predicate p(x) = “x + 3 = 5”; it has one variable x. Then p(1) is a false
proposition while p(2) is a true proposition. A predicate can have multiple variables; for example,
q(x, y) could be the predicate “x+ y = 5”.

Another way to turn a predicate p(x) into a proposition is to add a quantifier. There are two
types of quantifiers:

quantifier proposition truth value

universal (∀, “for all”) ∀x : p(x) if p(x) is true for all x: T; else: F

existential (∃, “there exists”) ∃x : p(x) if p(x) is true for at least one x: T; else: F

For example, if p(x) is the predicate “x + 2 = 3,” then ∀x : p(x) is false while ∃x : p(x) is true. If
q(x) is the predicate “x+ 1 > x,” then ∀x : q(x) and ∃x : q(x) are both true.

Note that quantification only makes sense if there is a universe of discourse, i.e., a set of pos-
sible values for each variable. For example, the truth value of ∃x : 2x = 1 depends on whether
or not x is allowed to be a fraction. In this chapter, our universe is the set of integers Z =
{. . . ,−2,−1, 0, 1, 2, . . .}, in which case ∃x : 2x = 1 is false.

The concepts from propositional logic still apply to predicates and quantifiers. For example,
∀x : p(x)∧q(x) is a proposition that states, “Every x satisfies both p(x) and q(x),” and De Morgan’s
Laws for Quantifiers state ¬(∀x : p(x)) ≡ ∃x : ¬p(x) and ¬(∃x : p(x)) ≡ ∀x : ¬p(x). An x that shows
∀x : p(x) is false is called a counterexample. For example, x = 1 (or any integer excluding 2) is a
counterexample to the proposition ∀x : x+ 3 = 5.
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Practice 1.3. Which of the following propositions are true (if any)?

1. ∀x : x ≤ x2

2. ∃x : x = x2 ∧ x ≥ 2

3. ∃x : x = x2 ∨ x ≥ 2

4. ∀x : (x ≥ 1) ⇒ ¬(x+ 1 > 2x)

Practice 1.4. Express the following sentences in predicate logic:

1. Every integer is positive.

2. If we subtract an integer from itself, the result is always 0.

3. The square of a negative number is always positive.

4. At least one positive number is larger than itself.

Nested Quantifiers

A proposition can have multiple quantifiers; the order of the quantifiers is important. For example,
suppose p(x, y) is the predicate “x+ y = 3” and consider the following propositions:

proposition truth value explanation

∀x∀y : p(x, y) F If x = 1 and y = 1, then x+ y ̸= 3.

∀x∃y : p(x, y) T For any x, we can set y = 3− x so that x+ y = 3.

∃x∀y : p(x, y) F There is no fixed x that satisfies x+ y = 3 for all y.

∃x∃y : p(x, y) T One possibility is x = 1, y = 2.

Notice that if we’re trying to prove ∀x∃y : p(x, y), we are allowed to let y depend on x. On the
other hand, if we want to prove ∃x∀y : p(x, y), we must pick a single x that works for all y.

Practice 1.5. Rewrite the following propositions such that no negation appears before a quan-
tifier:

1. ¬(∀x∃y : p(x, y))

2. ¬(∃x∀y : p(x, y))

Quantifiers, and nested quantifiers, allow us to state more sophisticated mathematical state-
ments. For example, “The product of a positive integer and a negative integer is always a negative
integer” can be written as ∀x∀y : (x > 0 ∧ y < 0) ⇒ xy < 0. Sometimes, when the context is
sufficiently clear, we omit repeated quantifiers. For example, the previous proposition can also be
written as ∀x, y : (x > 0 ∧ y < 0) ⇒ xy > 0.
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Practice 1.6. If p(x, y, z) = “x+ y = z”, which of the following are true (if any)?

1. ∀x∀y∃z : p(x, y, z)

2. ∃z∀x∀y : p(x, y, z)

1.3 Proofs

A proof is an explanation of why a proposition is true. A proof starts with propositions that are
known to be true, and each step in a proof should logically follow from the previous ones. When
we write a proof, there is a trade-off between thoroughness (i.e., spelling out every detail) and
efficiency (i.e., omitting details for brevity). Finding the “right” balance depends on the context
(e.g., difficulty of the proof, background of the audience) and personal preferences. Note that proofs
are generally written in complete sentences and do not use on the ∀ and ∃ symbols.

Before we see examples of proofs (and proof strategies), let’s establish some definitions. Again,
the universe of discourse in this chapter is the set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}, which
means that we should assume that every variable is an integer.

term definition

“n is even” ∃k : n = 2k

“n is odd” ∃k : n = 2k + 1

“a divides b” (a | b) a ̸= 0 ∧ ∃c : b = ac

(If a divides b, we say that a is a divisor or factor of b, and b is a multiple of a. The negation of
a | b is a ∤ b.) We will assume, without proof, the true proposition that every integer is either even
or odd (but not both).

Proof Strategies

We already saw a proof strategy in Section 1.1: to prove that two propositions are equivalent, we
can spell out their truth tables and note that they have identical columns. But this strategy only
works for relatively simple statements in propositional logic; for other statements, we’ll need other
strategies. The ones listed below strategies are not exhaustive, and many statements can be proven
in multiple ways, but they’re a decent way to get started.

Strategy 1: Direct proof. Many theorems are of the form p ⇒ q. (A theorem is just a true
proposition.) One way to prove these is directly: assume p; apply a combination of definitions,
logic, and known results to construct a sequence of true propositions; and conclude with q.

Theorem 1.7. For all n, if n is even, then n+ 1 is odd.

Proof. Assume n is even. By the definition of “even,” there exists an integer k such that
n = 2k. This implies n + 1 = 2k + 1. Since k is an integer, n + 1 satisfies the definition of
“odd,” so n+ 1 is odd.
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Highlight. A proof should not rely on any intuitions or examples. Instead, it should take
logical steps from the premise (e.g., “n is even”) to the goal (“n is odd”). The “correct” size
of these steps is subjective; when in doubt, take smaller steps.

Practice 1.8. Prove that for all n, if n is odd, then n+ 1 is even.

Practice 1.9. Prove that for all n, if 6 | n, then n is even.

When the context is clear, we sometimes omit universal quantifiers. Conventions can be use-
ful; for example, n and k often denote integers (just as i and j often denote index variables in
programming).

Theorem 1.10. If n is odd, then n2 is odd.

Proof. Assume n is odd. By the definition of “odd,” there exists an integer k such that
n = 2k + 1. Thus,

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Since 2k2 + 2k is an integer, n2 is odd.

Practice 1.11. Prove that if a | b and b | c, then a | c.

Practice 1.12. Prove that if m and n are odd, then mn is odd.

Strategy 2: Split into cases. Sometimes, a proof naturally splits into multiple cases. When
this happens, we can analyze each case separately.

Theorem 1.13. If n is odd, then there exists a such that n = 4a + 1 or there exists b such
that n = 4b− 1.

Proof. Assume n is odd. By the definition of “odd,” there exists k such that n = 2k + 1.

• If k is even, then there exists ℓ such that k = 2ℓ, so n = 2(2ℓ) + 1 = 4ℓ+1. Thus, if we
set a = ℓ, then n = 4a+ 1.

• If k is odd, then there exists ℓ such that k = 2ℓ + 1. This implies n = 2(2ℓ + 1) + 1 =
4ℓ+ 3 = 4(ℓ+ 1)− 1. Thus, if we set b = ℓ+ 1, then n = 4b− 1.

In both cases, the conclusion of the theorem is true, so we are done.

Practice 1.14. Prove that for all n, n(n+ 1) is even.
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Practice 1.15. Prove that if 5 | n, then 10 | n or n is odd.

Strategy 3: Prove the contrapositive. If we want to prove p ⇒ q, sometimes it’s easier to
prove its contrapositive, ¬q ⇒ ¬p. (Recall that the two propositions are equivalent.)

Theorem 1.16. If 3n+ 2 is odd, then n is odd.

Direct proof (failed attempt). Assume 3n + 2 is odd, so 3n + 2 = 2k + 1 for some integer k.
This means n = (2k − 1)/3. It is unclear how to proceed from here...

Proof. We shall give a direct proof of the contrapositive. In particular, we’ll show that if n is
even, then 3n+2 is even. If n is even, then n = 2k for some integer k, so 3n+2 = 3(2k)+2 =
2(3k) + 2 = 2(3k + 1). Since 3k + 1 is integer, 3n+ 2 is even.

Practice 1.17. Prove that if 3 ∤ n2, then 3 ∤ n.

Practice 1.18. Prove that if n2 − 2n+ 3 is even, then n is odd.

Strategy 4: Proof by contradiction. One way to prove a proposition p is to prove ¬p ⇒ q,
where q is something impossible (e.g., r ∧¬r for some proposition r). In other words, we can prove
that p is true by showing that ¬p logically leads to an impossible conclusion.

Theorem 1.19. There does not exist integers a, b such that 4a+ 2b = 1.

Proof. For contradiction, we assume that the theorem is false, i.e., there exist integers a, b
such that 4a+2b = 1. Dividing by 2, we obtain 2a+b = 1/2. However, this is a contradiction
because 2a + b is an integer but 1/2 is not. Thus, our assumption was false, so the theorem
must be true.

Theorem 1.20. There does not exist a largest even integer.

Proof. For contradiction, we assume that the theorem is false, i.e., there exists a largest even
integer, which we denote by n. Since n is even, there exists k such that n = 2k. Notice that
n+2 = 2k+2 = 2(k+1) is even. But n+2 > n, contradicting our assumption that n is the
largest even integer.

For the next theorem, we need another definition: an integer n is prime if n ≥ 2 and its only
divisors are 1 and n. We assume, without proof, the true proposition that every integer greater
than 1 has a prime divisor.
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Theorem 1.21. There are infinitely many prime numbers.

Proof. For contradiction, we assume there are only n prime numbers for some integer n. Then
we can label them as p1, p2, . . . , pn, where p1 = 2, p2 = 3, p3 = 5, etc. Consider the integer
Q = p1p2 · · · pn + 1. By the assumption above this box, pi | Q for at least one pi in the list of
primes, which means Q = kpi for some integer k. Thus,

p1p2 · · · pn + 1 = kpi.

Dividing both sides by pi yields a non-integer on the left (due to the 1/pi term) and the
integer k on the right. This is a contradiction, so our assumption was incorrect.

Practice 1.22. Prove, by contradiction, that ((p ⇒ q) ∧ q) ⇒ q is a tautology.

To prove an implication p ⇒ q by contradiction, we start by assuming p ⇒ q is false, which is
equivalent to assuming p ∧ ¬q. From there, we try to reach an impossibility.

Theorem 1.23. For every integer n, if n2 is even, then n is even.

Proof. For contradiction, assume that the theorem is false, i.e., there exists an integer n such
that n2 is even but n is odd. Then there exists an integer k such that n = 2k + 1, which
means n2 = (2k+1)2 = 4k2+2k+1 = 2(2k2+ k)+ 1. Since 2k2+ k is an integer, n2 satisfies
the definition of “odd.” However, this contradicts our assumption, so the theorem must be
true.

A proof of the contrapositive of p ⇒ q can be straightforwardly convert to a proof by contra-
diction of p ⇒ q: assume p ∧ ¬q, insert the proof of the contrapositive ¬q ⇒ ¬p, note that ¬p
contradicts our assumption p∧¬q, and conclude that p ⇒ q must be true. On the other hand, not
every proof by contradiction can be straightforwardly converted to a proof of the contrapositive.

Theorem 1.24. There does not exist an integer n such that 4n+ 1 = 21 and n− 3 = 1.

Proof. For contradiction, assume that there exists an integer n such that 4n + 1 = 21 and
n − 3 = 1. The first equality implies n = 5, so n − 3 = 2. However, this contradicts the
second equality. Thus, our assumption was incorrect, i.e., the theorem must be true.

Practice 1.25. Prove that if 6 | n, then 2 | n.

Practice 1.26. Prove that if a+ b ≥ 20, then a ≥ 10 or b ≥ 10.
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2 Sets, Relations, and Functions

The previous chapter introduced the fundamentals of mathematical reasoning; this chapter intro-
duces the core building blocks: sets, relations, and functions.

2.1 Sets

A set, commonly denoted by a capital letter, is a collection of objects called elements. If A is a set,
then “x ∈ A” means x is an element of A and “x ̸∈ A” means x is not an element of A. We let |A|
denote the size of A (i.e., the number of elements in A), and we let ∅ denote the empty set. (For
now, we will not consider what |A| means if A has infinitely many elements.) If every element in
A is also in another set B, then A is a subset of B, and we write A ⊆ B. A useful fact is A = B if
and only if A ⊆ B and B ⊆ A. Sets A and B are disjoint if they have no elements in common.

One way to specify a set is to list its elements in curly braces, e.g., A = {2, 3, 5}. We can
also use set builder notation, which has the following format: A = {x | p(x)}, where p(x) is a
predicate. This notation indicates that A is the set of elements x such that p(x) is true. For
example, {2, 3, 5} = {x | x < 7 ∧ x is prime}.

Just as we can combine propositions to form other propositions (e.g., p ∨ q), we can combine
sets A and B to form other sets:

term notation definition

union of A and B A ∪B {x | x ∈ A ∨ x ∈ B}

intersection of A and B A ∩B {x | x ∈ A ∧ x ∈ B}

difference of A and B A \B {x | x ∈ A ∧ x ̸∈ B}

complement of A A {x | x ̸∈ A}

power set of A P(A) {X | X ⊆ A}

As mentioned in the previous chapter, we need a universe of discourse for some things (e.g., A) to
make sense.

Just as many theorems are of the form p ⇒ q, many theorems are of the form A ⊆ B. (In fact,
A ⊆ B is equivalent to ∀x : x ∈ A ⇒ x ∈ B.) To show A ⊆ B, we start with any element a ∈ A
and show that a must also be in B.

Theorem 2.1. For any sets A and B, if A ∩B = A, then A ⊆ B.

Proof. Consider any element a ∈ A. Since A = A ∩ B, a must also be in A ∩ B, so a ∈ B.
Thus, A ⊆ B, as desired.

In the proof above, we should technically include the case where A = ∅. However, ∅ ⊆ B for
every set B, so it is reasonable to omit this case. (In other words, x ∈ ∅ ⇒ x ∈ B is vacuously true
for every set B.)

Practice 2.2. Prove that if A ∪B = B, then A ⊆ B.
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Practice 2.3. Prove that (A \B) ∪ (B \ C) ⊆ (A ∪B) \ (A ∩B ∩ C).

The next theorem has the form p ⇔ q; we’ll prove it by proving p ⇒ q and q ⇒ p separately.

Theorem 2.4. For any sets A and B, A ⊆ B iff P(A) ⊆ P(B).

Proof. Suppose A ⊆ B and consider any S ∈ P(A). Since S ⊆ A and A ⊆ B, S ⊆ B. Thus,
S ∈ P(B). Conversely, suppose P(A) ⊆ P(B). Since A ⊆ A, A ∈ P(A), so A ∈ P(B). This
means A ⊆ B, as desired.

Similarly, to prove A = B, we often prove A ⊆ B and B ⊆ A separately. We’ll illustrate this
method by proving one of De Morgan’s Laws for Sets (and leaving the other for practice).

Theorem 2.5. For any sets A and B, A ∪B = A ∩B.

Proof. We first prove A ∪B ⊆ A ∩ B. If x ∈ A ∪B, then x ̸∈ A and x ̸∈ B. This means
x ∈ A and x ∈ B, so x ∈ A ∩B.

Now we prove A ∩ B ⊆ A ∪B. If x ∈ A ∩ B, then x ∈ A and x ∈ B. This means x ̸∈ A
and x ̸∈ B, so x ̸∈ A ∪B, which implies x ∈ A ∪B.

Practice 2.6. Prove A ∩B = A ∪B.

Practice 2.7. Prove that A ∪B = A ∩B iff A = B.

2.2 Relations

For any non-negative integer k, a k-tuple is an ordered collection (or sequence) of k objects called
components (or terms); we write tuples in parentheses. A 2-tuple is also called an ordered pair (or
just pair). Now we can define another set operation: A× B (read as “the Cartesian product of A
and B,” or “A cross B”) is a set of pairs, where the first element is in A and the second is in B. In
other words, A×B = {(a, b) | a ∈ A ∧ b ∈ B}. Notice that |A×B| = |A| · |B|. For example,

{2, 3, 5} × {2, 4} = {(2, 2), (2, 4), (3, 2), (3, 4), (5, 2), (5, 4)}.

We let A2 = A× A, A3 = A× A× A, etc.

Theorem 2.8. If A ̸= ∅ and A×B = B × C, then B = C.

Proof. We’ll only show B ⊆ C; the proof of C ⊆ B is nearly identical. Consider any b ∈ B
and a ∈ A. Then (a, b) ∈ A×B, so (a, b) ∈ B × C, which implies b ∈ C.

A relation R from a set A to another set B is a subset of A×B. Instead of writing “(a, b) ∈ R”,
we often write “aR b”. The domain of R is Dom(R) = {x ∈ A | ∃y ∈ B : xR y}, and the range of
R is Rng(r) = {y ∈ B | ∃x ∈ A : xR y}.
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If A is a set, a relation on A is a relation from A to A. For example, < (“is less than”), =
(“is equal to”), and “divides” are three relations on Z. The table below, in which the universe of
discourse is Z, lists various properties that a relation on a set can satisfy. Note that a “×” indicates
that the relation satisfies that property.

property definition < = “divides”

reflexive ∀a : aR a ×

symmetric ∀a, b : aR b ⇒ bR a ×

transitive ∀a, b, c : aR b ∧ bR c ⇒ aR c × × ×

(The only reason “divides” is not reflexive is because 0 does not divide anything.)

Practice 2.9. Prove that the last three columns in the table above are correct.

Practice 2.10. How many relations on {0, 1} contain the pair (0, 1)?

Practice 2.11. Suppose R is a symmetric, transitive relation on A and Dom(R) = A. Prove
that R is reflexive.

Since a relation is a set, we can combine relations together to form new relations by taking their
union, intersection, etc.

Theorem 2.12. The intersection of two symmetric relations is symmetric.

Proof. Let R and S be symmetric relations and suppose (a, b) ∈ R ∩ S; we want to show
(b, a) ∈ R ∩ S. Since (a, b) ∈ R ∩ S, we have aR b and aS b. Since R and S are symmetric,
bR a and b S a. Thus, (b, a) ∈ R ∩ S, so R ∩ S is symmetric.

Practice 2.13. Prove that the intersection of two transitive relations is transitive.

Practice 2.14. Prove or disprove: The union of two transitive relations is transitive.

We can also construct other relations as follows:

• Suppose R is a relation from A to B and S is a relation from B to C. The composition of R
and S is a relation from A to C defined by S ◦R = {(a, c) | ∃b : aR b ∧ b S c}.

• Suppose R is a relation from A to B. The inverse of R is a relation from B to A defined by
R−1 = {(b, a) | (a, b) ∈ R}.

Intuitively, S ◦R consists of R and S “linked” together and R−1 is the “flipped” version of R.
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Theorem 2.15. If R and S are relations, then (S ◦R)−1 = R−1 ◦ S−1.

Proof. As usual, to prove A = B, we prove A ⊆ B and B ⊆ A separately. First, suppose
(a, b) ∈ (S ◦ R)−1. This means (b, a) ∈ (S ◦ R), so there exists c such that bR c and c S a,
which is equivalent to (c, b) ∈ R−1 and (a, c) ∈ S−1. This implies (a, b) ∈ R−1 ◦ S−1.

The other part is similar: suppose (a, b) ∈ R−1 ◦S−1. This means there exists c such that
(a, c) ∈ S−1 and (c, b) ∈ R−1, which is equivalent to c S a and bR c. This implies (b, a) ∈ S◦R,
so (a, b) ∈ (R ◦ S)−1.

Alternative Proof. Consider any (a, b). Notice the following:

(a, b) ∈ (S ◦R)−1

iff (b, a) ∈ S ◦R
iff ∃c : bR c ∧ c S a

iff ∃c : cR−1 b ∧ aS−1 c

iff (a, b) ∈ R−1 ◦ S−1.

Thus, (a, b) ∈ (S ◦R)−1 if and only if (a, b) ∈ R−1 ◦ S−1, which implies the theorem.

Highlight. The alternative proof above illustrates that we can sometimes prove A = B using
a one-part, rather than two-part, proof. But often, the proof of A ⊆ B looks quite different
from the proof of B ⊆ A, making it tricky to write a one-part proof.

Practice 2.16. Prove that R is symmetric if and only if R = R−1.

Practice 2.17. Prove that T ◦ (S ◦R) = (T ◦ S) ◦R.

Equivalence Relations and Partitions

An equivalence relation is a relation that is reflexive, symmetric, and transitive. If R is an equiva-
lence relation on A and a ∈ A, the set [a]R = {b | aR b} is the equivalence class of a. (When R is
clear from the context, we often write [a] instead of [a]R.)

Practice 2.18. Consider the following relation on Z:

R = {(a, b) | a+ b is even}.

Prove that R is an equivalence relation, and describe each equivalence class.

A partition P of a set A is a collection (i.e., set) of sets such that (1) each S ∈ P is a non-empty
subset of A, (2) any two distinct sets in P are disjoint, and (3) the union of all the sets in P is
equal to A. For example, P = {{1}, {2, 5}, {3, 4}} is a partition of A = {1, 2, 3, 4, 5}.
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Like a theorem, a lemma is just a true proposition. However, mathematicians typically use the
word “lemma” to describe a proposition that helps them prove a theorem.

Lemma 2.19. For any equivalence relation R, xR y if and only if [x] = [y].

Proof. Suppose xR y; we will show [x] ⊆ [y]. (The proof of [y] ⊆ [x] is similar.) Let z ∈ [x],
so xR z. Since R is symmetric, we have y Rx; since R is transitive, y R z. Thus, z ∈ [y].
Conversely, if [x] = [y], then y ∈ [x] (since y ∈ [y]), so xR y.

Now we are ready to prove a theorem that connects equivalence relations and partitions:

Theorem 2.20. For any equivalence relation R on a set A, the set of equivalence classes of
R form a partition of A.

Proof. Let P be the set of equivalence classes of R. First, since R is reflexive, a ∈ [a] for all
a ∈ A. Thus, every equivalence class is a non-empty subset of A, and the union of all the sets
in P is equal to A.

Now suppose [x] and [y] are distinct equivalence classes; we need to show that [x] and y are
disjoint. By Lemma 2.19, (x, y) ̸∈ R. For contradiction, assume there exists z ∈ [x]∩ [y]. This
means xR z and y R z; since R is symmetric and transitive, this implies xR y, contradicting
the fact that (x, y) ̸∈ R.

The converse of the theorem is also true; we leave its proof for practice.

Practice 2.21. Suppose P is a partition of A, and we define a relation R such that aR b if
a and b are in the same set in P . Prove that R is an equivalence relation on A.

2.3 Functions

Suppose A and B are sets. A function f from A to B is a relation from A to B that satisfies the
following property: for every a ∈ A, there exists exactly one element b ∈ B such that (a, b) ∈ f . In
other words, f is a function if, for every input a ∈ A, f produces exactly one output in B.

If f is a function from A to B, we write f : A → B, and f(a) = b instead of (a, b) ∈ f . Recall
that A is the domain of f ; we refer to B as the codomain. If the domain contains a tuple (a1, . . . , an),
we typically omit a pair of parentheses by writing f(a1, . . . , an) instead of f((a1, . . . , an)).

The table below, in which A = B = Z, lists a few properties that a function can satisfy.

property definition f(a) = a+ 1 f(a) = 2a

surjective (“onto”) ∀b∃a : f(a) = b ×

injective (“one-to-one”) ∀a1, a2 : a1 ̸= a2 ⇒ f(a1) ̸= f(a2) × ×

bijective surjective and injective ×

(A bijection is also known as a “one-to-one correspondence.”)
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Theorem 2.22. The function f : Z2 → Z defined by f(x, y) = x + y is surjective but not
injective.

Proof. We first show that f is surjective by considering any z ∈ Z. Notice that if x = 0 and
y = z, then f(x, y) = 0+ z = z, so f is surjective. There are infinitely many counterexamples
that show f is not injective; for example, (1, 1) ̸= (0, 2) but f(1, 1) = 2 = f(0, 2).

Practice 2.23. For each of the following functions from Z to Z, determine if the function is
surjective, injective, both, or neither. Explain your answers.

1. f(x) = 2

2. f(x) = 2x+ 1

3. f(x) = x2

Practice 2.24. Does there exist a function from Z to Z that is surjective but not injective?
If so, describe an example; if not, explain why.

Recall that if R is a relation from A to B and S is a relation from B to C, then their composition
is a relation from A to C defined by S ◦ R = {(a, c) | ∃b : aR b ∧ b S c}. Since every function is a
relation, this also applies to functions: if f : A → B and g : B → C are functions, then h = g ◦ f is
a function from A to C defined as h = {(a, c) | ∃b : f(a) = b ∧ g(b) = c}. Before we continue, let’s
verify that h is indeed a function (not just a relation):

Theorem 2.25. If f : A → B and g : B → C are functions, then h = g ◦f is a function from
A to C.

Proof. For all a ∈ A, there exists b ∈ B such that (a, b) ∈ f since f is a function, and there
exists c such that (b, c) ∈ g since g is a function, so (a, c) ∈ h.

Now suppose (a, c1) ∈ h and (a, c2) ∈ h for some c1, c2 ∈ C; we want to show that c1 = c2.
By the definition of h, there exist b1, b2 ∈ B such that

f(a) = b1 g(b1) = c1

f(a) = b2 g(b2) = c2

Since f is a function, we must have b1 = b2, and since g is a function, we must have c1 = c2.

Now that we know g ◦ f is a function, let’s prove a few theorems about it.

Theorem 2.26. If f : A → B and g : B → C are surjective, then g ◦ f is surjective.

Proof. Consider any c ∈ C; we want to show that there exists a ∈ A such that g(f(a)) = c.
Since g is surjective, there exists b ∈ B such that g(b) = c. Moreover, since f is surjective,
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there exists a ∈ A such that f(a) = b. Thus, we have g(f(a)) = g(b) = c, as desired.

Practice 2.27. Prove that if f and g are injective, then g ◦ f is injective.

Practice 2.28. Prove that if f and g are bijective, then g ◦ f is bijective.

Practice 2.29. Prove or disprove: If f and g are functions, then g ◦ f = f ◦ g.

If f : A → B is a function, then the inverse of f is the relation f−1 = {(b, a) | (a, b) ∈ f} ⊆ B×A.
The following theorem states that f−1 is a function if and only if f is injective.

Theorem 2.30. Suppose f is a function with domain A. Then f is injective if and only if
f−1 is a function from Rng(f) to A.

Proof. Suppose f is injective and consider any b ∈ Rng(f). If there exist a1, a2 ∈ A such
that (b, a1) ∈ f−1 and (b, a2) ∈ f−1, then we must have (a1, b) ∈ f and (a2, b) in f . Since f
is injective, a1 = a2, so f−1 is a function from Rng(f) to A.

Now assume f−1 is a function from Rng(f) to A, and for contradiction, assume f is not
injective. This means there exist a1, a2 ∈ A such that a1 ̸= a2 and f(a1) = f(a2). If we let
b = f(a1), this means (b, a1) ∈ f−1 and (b, a2) ∈ f−1, contradicting our assumption that f−1

is a function. Thus, f must be injective.

Practice 2.31. Prove that if f is injective, then f−1 is also injective.

Sequences and Summations

Recall that a sequence is an ordered collection of objections; repetitions are allowed in a sequence.
We can define a sequence more formally as a function a whose domain is (1) {i, . . . , j} for some
i, j ∈ Z such that i < j, or (2) {i, i+ 1, . . .} for some i ∈ Z. In the first case, a is a finite sequence
of length j − i + 1; in the second and third cases, a is an infinite sequence. If a is a sequence, we
often refer to ai instead of a(i).

For example, one sequence of length 5 is (2, 4, 6, 8, 10). Under our formal definition, we can
describe this sequence as a function a : {1, 2, 3, 4, 5} → Z defined by

a = {(1, 2), (2, 4), (3, 6), (4, 8), (5, 10)},

but informally, we can write a = (2, 4, 6, 8, 10). An example of an infinite sequence is the Fibonacci
sequence, which is defined recursively:

a1 = 1, a2 = 1

∀n ≥ 3: an = an−1 + an−2

So the first few terms of the Fibonacci sequence are (1, 1, 2, 3, 5, . . .).
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Practice 2.32. Suppose the first few terms of an infinite sequence a are (1, 7, 25, 79, . . .).
What is a simple formula for an?

If a is a sequence, we can use summation notation to express the sum of the terms in a from ai
through aj as follows:

j∑
k=i

ak = ai + ai+1 + · · ·+ aj.

If S is a set (or sequence) of numbers,
∑

a∈S a refers to the sum of every number a ∈ S. Similarly,
we can denote the product from ai through aj by

j∏
k=i

ak = ai × ai+1 × · · · × aj,

and
∏

a∈S a refers to the product of every number a ∈ S.

Practice 2.33. What are the values of
∑5

i=1 2i,
∑5

i=1 i
2, and

∏5
i=3(i+ 1)?

In Chapter 4, we will prove the following classic theorem:

Theorem 2.34. For every positive integer n,
∑n

i=1 i = n(n+ 1)/2.
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