
2 Greedy Algorithms

In this chapter, we consider optimization problems whose solution can be built iteratively as
follows: in each step, there is a natural “greedy” choice, and the algorithm is to repeatedly
make that greedy choice. In the analysis, we must show that a solution created this way is
indeed an optimal solution to the problem.

Sometimes, there are multiple interpretations for what it means to be greedy, and we will
have to figure out which choice is the correct one for the problem. And for many problems,
there is no optimal greedy solution. But in this chapter, we will only be concerned with
problems for which some greedy algorithm works.

2.1 Selecting Compatible Intervals

Problem statement. Let {1, . . . , n} denote a set of n events, where each event i occupies
a time interval [s(i), t(i)]. A subset of events is compatible if no two events overlap in time.
Our goal is to select a largest subset of compatible events.

Algorithm. Repeatedly select the event that finishes earliest. More formally, first sort the
events by their end time so that t(1) ≤ t(2) ≤ · · · ≤ t(n). Then add the first event to the
solution and traverse the list until we reach a non-conflicting event. Add this event as well,
and repeat this process until we’ve traversed the entire list.

Theorem 2.1. The algorithm optimally solves the problem of selecting a largest subset of
compatible intervals.

Proof. Suppose our solution returns m events, which we denote by ALG = {i1, . . . , im}. Let
OPT = {j1, . . . , jm∗} denote an optimal solution, which contains m∗ events. Assume that
ALG and OPT are both sorted in increasing finishing time, so i1 is the event that finishes
first among all n events. This means t(i1) ≤ t(j1), so if we only consider i1 and j1, ALG is
“ahead” of OPT because it finishes at least as early.

In general, we can use induction to show that ALG “stays ahead” of OPT at every step,
that is, t(ik) ≤ t(jk) for every k ≤ m. We’ve shown the statement is true for k = 1.
Assuming it is true for k − 1, we have t(ik−1) ≤ t(jk−1). Since jk starts after jk−1 ends, it
also starts after ik−1 ends. This means jk is a candidate after the algorithm picks ik−1, so
by the algorithm’s greedy choice when picking ik, we must have t(ik) ≤ t(jk).

In particular, this means t(im) ≤ t(jm). Now, for contradiction, suppose m∗ ≥ m + 1.
The event jm+1 starts after jm ends, so it also starts after im ends. This means the algorithm
could have picked jm+1 after picking im, but it actually terminated. This contradicts the
fact that the algorithm processes the entire list of events.

2.2 The Fractional Knapsack Problem

Problem statement. Suppose [n] = {1, . . . , n} denote a set of n items, where each item
i has weight wi > 0 and value vi > 0. We have a knapsack with capacity B. Our goal is to
determine xi ∈ [0, 1] for each item i to maximize the total value

∑n
i=1 xivi, subject to the

constraint that the total weight
∑n

i=1 xiwi is at most B.
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Remark. In the original (i.e., not fractional) knapsack problem, we cannot take a fraction
of an item, i.e., we must set xi ∈ {0, 1} for every item i. For this problem, there is no natural
greedy algorithm that always returns an optimal solution. However, it can be solved using
a technique known as dynamic programming, as we show in Ch. 3.

Algorithm. Relabel the items in decreasing1 order of “value per weight,” so that

v1
w1

>
v2
w2

> · · · > vn
wn
.

In this order, take as much of each item as possible (i.e., set each xi = 1) until the total
weight of selected items reaches the capacity of the knapsack B.

Theorem 2.2. The greedy algorithm above returns an optimal solution to the fractional
knapsack problem.

Proof. Let ALG = (x1, . . . , xn) denote the solution returned by the greedy algorithm, and
let OPT = (x∗1, . . . , x

∗
n) denote an optimal solution. For contradiction, assume OPT > ALG;

let i denote the smallest index such that x∗i 6= xi. By design of the algorithm, we must have
x∗i < xi. Furthermore, since OPT > ALG, there must exist some j > i such that x∗j > 0.

We now modify OPT as follows: increase x∗i by ε > 0 and decrease x∗j by εwi/wj. Note that
ε can be chosen small enough such that x∗i and x∗j remain in [0, 1] after the modification. Let
OPT′ denote this modified solution; notice that OPT and OPT′ have the same total weight
so OPT′ is feasible. Now consider the value of OPT′:

OPT′ = OPT + ε · vi −
εwi
wj
· vj = OPT + ε ·

(
vi −

wi
wj
· vj
)
> OPT,

where the inequality follows from ε > 0 and j > i. Thus, OPT′ is a feasible solution with
total value greater than OPT, contradicting the fact that OPT is an optimal solution.

2.3 Maximum Spacing Clusterings

Problem statement. Let X denote a set of n points. For any two points u, v, we are given
their distance d(u, v) ≥ 0. (Distances are symmetric, and the distance between any point
and itself is 0.) The spacing of a clustering (i.e., partition) of X is the minimum distance
between any pair of points lying in different clusters. We are also given k ≥ 1, and our goal
is to find a clustering of X into k groups with maximum spacing.

Algorithm. Our algorithm is essentially Kruskal’s algorithm for Minimum Spanning Tree
(Sec. 1.3). In the beginning, each point belongs to its own cluster. We repeatedly add an
edge between the closest pair of points in different clusters until we have k clusters. (This is
equivalent to computing the MST and removing the k − 1 longest edges.)

Theorem 2.3. The algorithm above returns a clustering with maximum spacing.

1We can assume the vi/wi values are unique without loss of generality; we leave the proof as an exercise.
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Proof. Let α denote the spacing of the clustering ALG produced by the algorithm, so α is
the length of the edge that the algorithm would have added next, but did not. Now consider
the optimal clustering OPT. It suffices to show that the spacing of OPT is at most α. If
ALG 6= OPT, then there must exist two points u, v ∈ X such that in ALG, u and v are in the
same cluster, but in OPT, u and v are in different clusters.

Now consider the path P between u and v along the edges in ALG. Since the algorithm
adds edges in non-decreasing order of length, and the edge corresponding to α was not
added, all of the edges in P have length at most α. Furthermore, since u and v lie in
different clusters of OPT, there must be some edge on P whose endpoints lie in different
clusters of OPT. Thus, the distance between these two clusters is at most α.

2.4 Stable Matching

Problem statement. Let G = (X ∪ Y,E) be a bipartite graph where |X| = |Y | = n.
The vertices in X represent students, and the vertices in Y represent companies. Each
student has a preference list (i.e., an ordering) of the n companies, and each company has a
preference list of the n students.

Our goal is to construct a matching function M : Y → X such that each company is
matched with exactly one student, and there are no instabilities. An instability is defined as
a (student, company) pair (x, y) such that y prefers x over M(y), and x prefers y over the
company y′ such that M(y′) = x.2

Remark. It is not obvious that a stable matching even exists for every possible set of
preference lists. In this section, we not only prove this holds, but we do this by presenting an
algorithm (known as the Gale-Shapley algorithm) that efficiently returns a stable matching.

Algorithm. If we focus our attention on a particular student x, then the greedy choice to
make would be to match that student to their favorite company. So in fact, our algorithm
does this in the first round: it assigns every student to their favorite company. If every
company receives exactly one applicant, then it’s not difficult to show that we’d be done.
But if a company receives more than 1 applicant, then it tentatively gets matched with that
student, and the other applicants return to the pool.

In each subsequent round, an unmatched student applies to their favorite company that
hasn’t rejected them yet, that company gets tentatively matched with their favorite, and the
rejected student (if one exists) returns to the pool. Note that a company never rejects an
applicant unless a better one (from the company’s perspective) applies.

Theorem 2.4. Algorithm 4 returns a stable matching.

Proof. We first show that the algorithm terminates and the output is a matching. Notice
that no student applies to the same company more than once, so the algorithm terminates
in most n2 iterations. Now suppose the algorithm ended with an unmatched student x.
Whenever a company y receives an applicant, y is (tentatively) matched for the rest of the

2If we view X as men and Y as women, then an instability consist of a man and a woman who both wish
they could cheat on their respective partners.
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Algorithm 4 The Gale-Shapley algorithm

1: Initialize M(y) = ∅ for all y ∈ Y and S = X.
2: while S is not empty do
3: Remove some student x from S.
4: Let y denote x’s favorite company that hasn’t rejected them yet.
5: if M(y) = ∅ or y prefers x to M(y) then
6: Add M(y) to S and set M(y) = x. . x and y are tentatively matched
7: else
8: Return x to S. . x is rejected by y

9: return the matching function M

algorithm. Since x must have applied to every company, in the end, every company must
be matched. But |X| = |Y |, so it cannot be the case that every company is matched while
x remains unmatched.

Now we show at M is stable. For contradiction, suppose (x, y) is an instability, where x
is matched to some y′ but prefers y, and y is matched to M(y) but prefers x. Since x prefers
y to y′, x must have applied to y at some point. But, since y ends up matched with M(y), y
must have rejected x at some point in favor of someone y prefers more. The tentative match
for y only improves over time (according to y’s preference list), so y must prefer M(y) to x.
This contradicts our assumption that y prefers x to M(y), so we are done.

2.5 Exercises

1. Let {1, . . . , n} denote a set of n customers, where each customer has a distinct pro-
cessing time ti. In any ordering of the customers, the waiting time of a customer i is
the sum of processing times of customers that appear before i in the order. Give an
O(n log n)-time algorithm that returns an ordering such that the sum (or average) of
waiting times is minimized.

2. Consider the same setup as the problem in Sec. 2.1. Instead of sorting by end time,
suppose we sort by non-decreasing start time, duration (i.e., length of the interval),
or number of conflicts with other events. For each of these three algorithms, give an
instance where the algorithm does not return an optimal solution.

3. Consider the same setup as the problem in Sec. 2.1. Now our goal is to partition
the events into groups such that all of the events in a group are compatible, and the
number of groups is minimized. Give an O(n2)-time algorithm for this problem.

4. Consider the same setup as the problem in Sec. 2.1. We say a point x stabs an interval
[s, t] if s ≤ x ≤ t. Give an O(n log n)-time algorithm that returns a minimum set of
points that stabs all intervals.

5. Consider the fractional knapsack problem from Sec. 2.2. Prove that the assumption
that all vi/wi values are unique can be made without loss of generality.
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6. Suppose there are an unlimited number of coins in each of the following denominations:
50, 20, 1. The problem input is an integer n, and our goal is to select the smallest
number of coins such that their total value is n. The greedy algorithm is to repeatedly
select the denomination that is as large as possible.

(a) Give an instance where the greedy algorithm does not return an optimal solution.

(b) Now suppose the denominations are 10, 5, 1. Show that the greedy algorithm
always returns an optimal solution.

7. Consider the stable matching problem described in Sec. 2.4. For any student x and
company y, we say that (x, y) is valid if there exists a stable matching that matches x
and y. For each student x, let f(x) denote the highest company on x’s preference such
that (x, f(x)) is valid. Similarly, for any company y, let g(y) denote the lowest valid
student on y’s preference list such that (g(y), y) is valid.

(a) Prove that the Gale-Shapley algorithm always matches x with f(x).

(b) Prove that the Gale-Shapley algorithm always matches y with g(y).

8. An independent set of a graph is a subset of vertices such that no two share an edge.
Let T = (V,E) be a tree. Give an O(n)-time algorithm that returns a maximum
independent set (i.e., one with the most vertices) of T . (In Sec. 3.4, we solve the
weighted version of this problem.)

9. A matching in a graph is a subset of edges such that no two share an endpoint. Let
T = (V,E) be a tree. Give an O(n)-time algorithm that returns a maximum matching
(i.e., one with the most edges) of T . (In Sec. 3.5 Exercise 13, we solve the weighted
version of this problem.)
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