
Notes on Algorithms

Kevin Sun

Preface . 3
Preliminaries . 4

1 Array Algorithms 5
1.1 Max in Array . 5
1.2 Two Sum . 6
1.3 Binary Search . 6
1.4 Selection Sort . 7
1.5 Merge Sort . 8

2 Essential Graph Algorithms 10
2.1 Breadth-First Search . 10
2.2 Depth-First Search . 11
2.3 Cycle Finding . 12
2.4 Topological Ordering . 12
2.5 Strongly Connected Components . 13

3 Greedy Algorithms 15
3.1 Minimum Spanning Tree . 15
3.2 Selecting Compatible Intervals . 18
3.3 Fractional Knapsack . 19

4 Dynamic Programming 21
4.1 Max in Array . 21
4.2 Longest Increasing Subsequence . 22
4.3 Longest Palindromic Subsequence . 23
4.4 0/1 Knapsack . 24
4.5 Edit Distance . 25
4.6 Independent Set in Trees . 27

5 Shortest Paths 29
5.1 DAG DP . 29
5.2 Bellman-Ford . 30
5.3 Dijkstra’s algorithm . 32
5.4 Floyd-Warshall . 32

1

6 Flows and Cuts 34
6.1 Ford-Fulkerson . 35
6.2 Bipartite Matching . 37
6.3 Bipartite Vertex Cover . 38

7 NP-Hardness 39
7.1 Reductions, P, and NP . 39
7.2 Independent Set to Vertex Cover . 41
7.3 3-SAT to Independent Set . 41
7.4 Vertex Cover to Dominating Set . 42
7.5 Directed to Undirected Hamiltonian Cycle . 43

8 Approximation Algorithms 45
8.1 Vertex Cover . 45
8.2 Load Balancing . 46
8.3 Metric k-Center . 47
8.4 Maximum Cut . 48

2

Preface

These notes cover topics in algorithms at a standard undergraduate level. They assume familiarity
with fundamental programming concepts (e.g., arrays, loops), discrete math (e.g., basic set theory,
graphs), and asymptotic notation. I recommend the textbooks below for further reading; these
notes are primarily based on them:

• Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein

• Algorithms by Dasgupta, Papadimitriou, and Vazirani

• Algorithms by Erickson

• Algorithm Design by Kleinberg and Tardos

• The Algorithm Design Manual by Skiena

Of course, there are many other excellent textbooks and resources not listed above, and I encourage
you to seek them out.

— Kevin Sun
Initially written: June 2021

Last updated: June 2024

3

Preliminaries

Unless specified otherwise, we assume the following:

• The set of integers is Z, and the set of positive integers is Z+.

• For all n ∈ Z+, [n] = {1, 2, . . . , n}, and for all a, b ∈ Z, [a, b] = {a, a+ 1, . . . , b}.

• For every array A, the length of A is n, the indices of A range from 1 through n, and A[i : j]
is the subarray [A[i], A[i+ 1], . . . , A[j]].

• For every graph G, the set of vertices is V (G) = [n] (or just V if G is clear from the context).
The set (not multiset) of edges is E(G) (or just E). Every edge has two distinct endpoints; if
G is directed, (u, v) and (v, u) can both be edges.

• Every graph G is represented in adjacency list format. More specifically, G is an array of
length n, and for all u ∈ V , G[u] is a list of the (out-)neighbors of u.

Correctness proofs

The purpose of a correctness proof is to convince the reader that an algorithm is correct. In these
notes, we prioritize communicating the main ideas behind each algorithm in a clear and concise
manner, not expanding on every mathematical detail.

Running time

The “running time” of an algorithm is the maximum number (as a function of the input length) of
primitive operations that it executes. If the input has length n, then a T (n)-time algorithm executes
at most T (n) primitive operations on that input. Each of the following is a primitive operation:

• Assigning a value to a variable (e.g., x← 0)

• Performing a comparison (e.g., x > y)

• Performing an arithmetic operation (e.g., x+ y)

• Indexing into an array (e.g., accessing A[3])

• Calling or returning from a method

Calculating the exact number of primitive operations executed by an algorithm can be tricky. For
example, since we won’t work with a totally precise model of computation, we can’t even count
exact number of primitive operations in a simple for-loop. But throughout these notes, we’ll use
asymptotic notation, which allows us to bypass the need to meticulously count primitive operations.
It is also ubiquitous in theoretical computer science, so for further reading, it is worthwhile to become
familiar with it.

4

1 Array Algorithms

Every chapter begins with an overview. Recall that unless stated otherwise, every array has length
n, and the indices range from 1 through n.

Overview

Section Summary Time

1.1: Max in Array Scan A while updating the maximum seen so far. O(n)

1.2: Two Sum Set (i, j) = (1, n); if A[i] + A[j] ̸= t, increment i or
decrement j as necessary.

↑

1.3: Binary Search Check the middle element; if it’s not t, recurse on either
the left or right half of the A.

O(log n)

1.4: Selection Sort For i ∈ [n], swap the smallest element in A[i :n] with
A[i].

O(n2)

1.5: Merge Sort Split A in two halves, recursively sort each half, and
merge using two pointers.

O(n log n)

1.1 Max in Array

Problem Statement

The input is an array A of n distinct, positive integers. Our goal is to return the largest
integer in A. Describe an O(n)-time algorithm for this problem, prove that it’s correct, and
analyze its running time.

Max-in-Array(A):

1 m = A[1]
2 for i = 2, . . . , n:
3 if A[i] > m:
4 m = A[i]

5 return m

Algorithm: Setm = A[1]. Scan A and updatem by setting
m = A[i] whenever A[i] > m. (Alternatively, we could set
m = max(m,A[i]) in every iteration.) Return m.

Correctness: At any point in the algorithm, m = A[i] for
some i ∈ [n], so if the largest integer in A is A[i∗], at the
beginning of the iteration where i = i∗, we must have A[i∗] >
m. So in this iteration, the algorithm sets m = A[i∗]. In the
subsequent iterations, m does not change because A[i∗] is the

largest integer in A. Thus, the algorithm returns A[i∗], as desired.

Running time: The algorithm makes n− 1 iterations, and each iteration takes O(1) time, so the
total running time is O(n).

5

1.2 Two Sum

For the Two Sum problem, the “brute-force” algorithm takes O(n2) time, but it does not take
advantage of the fact that the input array A is sorted, which allows us to obtain an O(n)-time
algorithm.

Problem Statement

The input is (A, t), where A is an array of n distinct integers sorted in increasing order and
t ∈ Z. Our goal is to return indices (i, j) such that i < j and A[i] +A[j] = t (or nothing if no
such (i, j) exists). Describe an O(n)-time algorithm for this problem, prove that it’s correct,
and analyze its running time.

Two-Sum(A, t):

1 i, j = 1, n
2 while i < j :
3 if A[i] + A[j] = t:
4 return (i, j)
5 else if A[i] +A[j] < t:
6 i += 1
7 else:
8 j −= 1

Algorithm: We use a “two-pointer” technique: Start-
ing with (i, j) = (1, n) as our first “candidate” solution,
we check if A[i] + A[j] = t. If so, we’re done. If not, we
either increment i (if A[i]+A[j] is too small) or decrement
j (if A[i] +A[j] is too big). Either way, we keep checking
and adjusting until we return a solution or i = j.

Correctness: If the algorithm returns some (i, j), then
it is a valid solution. Conversely, suppose the input (A, t)
has at least one solution, and let (i∗, j∗) denote the one
with the smallest value of i∗. If (i∗, j∗) = (1, n), then the
algorithm immediately returns (1, n). If not, then i and

j approach each other until j = j∗ or i = i∗. If j = j∗ occurs first, then at this point, i < i∗, so
A[i] + A[j] < A[i∗] + A[j∗] = t since the integers in A are sorted and distinct. Thus, j “waits” at
j∗ while the algorithm increases i until i = i∗. If i = i∗, then i waits at i∗ instead. Either way, the
algorithm finds (i∗, j∗) and returns it.

Running time: Notice that j − i is initially n− 1, decreases by 1 in each iteration, and cannot
decrease below 0. Thus, the algorithm makes O(n) iterations. Each iteration takes O(1) time, so
the total running time is O(n).

1.3 Binary Search

Here is another example of speeding up an algorithm by taking advantage of the fact that the input
array is sorted.

Problem Statement

The input is (A, t), where A be an array of n distinct integers sorted in increasing order and
t ∈ Z. Our goal is to return an index k such that A[k] = t (or nothing if no such k exists).
Describe an O(log n)-time algorithm for this problem, prove that it’s correct, and analyze its
running time.

6

Binary-Search(A, t):

1 i, j = 1, n
2 while i ≤ j :
3 m = ⌊(i+ j)/2⌋
4 if A[m] = t:
5 return m
6 else if A[m] < t:
7 i = m+ 1
8 else:
9 j = m− 1

Algorithm: Check if A[m] = t, where m is the middle
index of A. If A[m] < t, recurse on the right half of A
(i.e., A[m+ 1 :n] becomes the new input array); otherwise,
recurse on the left half.

Correctness: If the algorithm returns some m, then it
must satisfy A[m] = t. Conversely, assume t ∈ A; we must
prove that the algorithm returns m such that A[m] = t.

The algorithm always “focuses” on a subarray A[i : j].
Notice that A[i : j] always contains t, and A[i : j] shrinks in
each iteration. So by the iteration in which A[i : j] only
contains t, the algorithm returns t.

Running time: We claim that if the subarray A[i : j] has length ℓ at the beginning of some
iteration and length ℓ′ at the end of the same iteration, then ℓ′ ≤ ℓ/2. Assuming that the algorithm
sets i = m+ 1 in this iteration,

ℓ′ = j − (m+ 1) + 1 = j −
⌊
i+ j

2

⌋
≤ j − i+ j

2
+

1

2
=

j − i+ 1

2
=

ℓ

2
.

We can similarly show ℓ′ ≤ ℓ/2 if the algorithm sets j = m − 1 in this iteration. So either way,
since A[i : j] initially has length n, after k iterations, A[i : j] has length at most n/2k. Thus, the
algorithm terminates within O(log n) iterations, and each iteration takes O(1) time, so the total
running time is O(log n).

1.4 Selection Sort

Selection Sort is one of many O(n2)-time sorting algorithms.

Problem Statement

The input is an array A of n distinct integers. Our goal is to sort A by increasing value (i.e.,
rearrange A such that A[1] < A[2] < · · · < A[n]). Describe an O(n2)-time algorithm for this
problem, prove that it’s correct, and analyze its running time.

Selection-Sort(A):

1 for i = 1, . . . , n:
2 m = i
3 for j = i+1, . . . , n:
4 if A[j] < A[m]:
5 m = j

6 swap A[i], A[m]

Algorithm: The algorithm executes n rounds, one for each
i ∈ [n]. In round i, it finds the smallest element A[m] in
A[i :n] and swaps it with A[i].

Correctness: We claim that after round i, A[1 : i] contains
the i smallest elements of A in sorted order. The correctness
of the algorithm follows from this claim when i = n. The
base case is round i = 1, in which the algorithm sets A[1] to
be the smallest element of A. In Lines 2–5 of round i+1, the
algorithm finds the smallest element in A[i + 1 :n], which is

the (i+ 1)-th smallest element of A (since A[1 : i] contains i smaller elements). In Line 6, it places

7

this element at index i. The result is that at the end of round i + 1, A[1 : i + 1] contains the i + 1
smallest elements of A in sorted order, as desired.

Running time: In round i, the algorithm executes at most c(n− i) operations for some c ∈ Z+.
Summing over all i ∈ [n], we see that the total number of operations is at most

c

n∑
i=1

(n− i) = c · ((n− 1) + (n− 2) + · · ·+ 2 + 1) = O(n2).

1.5 Merge Sort

Problem Statement

The input is an array A of n integers. Our goal is to sort A by non-decreasing value (i.e.,
rearrange A such that A[1] ≤ A[2] ≤ · · · ≤ A[n]). Describe an O(n log n)-time algorithm for
this problem, prove that it’s correct, and analyze its running time.

Algorithm: The algorithm is recursive: if n = 1, simply return A. Otherwise, split A into its
left and right halves and recursively sort each half. Then merge the two halves using a two-pointer
approach.

Merge-Sort(A):

1 if n = 1:
2 return A
3 k = ⌊n/2⌋
4 AL = Merge-Sort(A[1 : k])
5 AR = Merge-Sort(A[k + 1 :n])
6 i, j, B = 1, 1, [empty list]
7 while i ≤ k and j ≤ n− k :
8 if AL[i] ≤ AR[j]:
9 append AL[i] to B; i += 1

10 else:
11 append AR[j] to B; j += 1

12 if i > k :
13 append each element of AR[j :n− k] to B
14 else:
15 append each element of AL[i : k] to B
16 A = B (as an array)
17 return A

Correctness: Assuming (by induction) that AL and AR are each sorted, notice that the merge
process combines them into a sorted list B. More specifically, if AL[i] ≤ AR[j], then AL[i] is the
smallest integer in the two subarrays, so it should be the next element appended to B (Line 9). The
same reasoning holds if AR[j] < AL[i]. This continues until one of the subarrays becomes empty. If

8

i > k, AL[i : k] is empty, so AR[j :n− k] contains all of the remaining elements of A in sorted order,
so we should append them to B (Line 13). The same reasoning holds if j > n− k.

Remark

Merge Sort is one of the most famous “divide-and-conquer” algorithms. A typical divide-and-
conquer algorithm splits the input into disjoint parts, recursively solves the problem on each
part, and combines the solutions to solve the original problem.

Running time: Let T (n) denote the running time of the algorithm on an input of size n. In
Lines 4 and 5, we call the algorithm itself on twice, where each input has size n/2.1 These two
calls together contribute 2 · T (n/2) time to the total running time. After the recursive calls, in
each iteration of the while-loop, i + j increases by 1. Since i + j ≤ n, Lines 7–11 take O(n) time.
Appending the remaining elements of AR or AL takes O(n) time. Putting this all together, we have

T (n) ≤ 2 · T
(n
2

)
+ cn

for some constant c; assuming T (1) ≤ k for some constant k ≥ c, we can prove T (n) ≤ kn(log n+1)
by induction:

T (n) ≤ 2 · T
(n
2

)
+ cn

≤ 2 · kn
2

(
log

n

2
+ 1

)
+ cn

≤ kn log n+ kn

= kn(log n+ 1).

Thus, T (n) ≤ kn · (2 log n) = O(n log n), as desired.

Remark

Selection Sort and Merge Sort are both comparison-based sorting algorithms (i.e., they only
obtain information about elements in A by comparing them to each other). Every comparison-
based sorting algorithm has running time Ω(n log n). By making additional assumptions
about the input, we can obtain faster algorithms. For example, if every element in A is in
{1, 2, 3}, we can sort A in O(n) time: partition A into 3 lists and combine them.

1For simplicity, we assume n/2 is always an integer; the full analysis uses similar reasoning.

9

2 Essential Graph Algorithms

The algorithms in this section are essential building blocks in the study of graph algorithms. Note
that the adjacency list representation of any graph has size Θ(m + n), so every algorithm in this
chapter runs in linear time.

Overview

Section Summary Time

2.1: BFS Process vertices in “layers” via a queue: start with s,
then out-neighbors of s, etc.

O(m+n)

2.2: DFS Set pre[u] when we start exploring u, set post[u] when we
stop, backtrack when stuck.

↑

2.3: Cycle Finding Run DFS, find a back edge (u, v) and the v-u path P in
the DFS tree, return P + (u, v).

↑

2.4: Topological
Ordering

Order V by decreasing post-value. ↑

2.5: SCCs Run DFS(GR), run BFS(G, u) for each u in decreasing
order of post[u].

↑

2.1 Breadth-First Search

Finding shortest paths is a classic problem. We start with a relatively simpler version; we’ll consider
more complicated situations in Chapter 5. Note that the distance from s to v is the length of the
shortest path from s to v.

Problem Statement

The input is (G, s), where G is a directed graph and s ∈ V . Our goal is to return an array d
such that for all v ∈ V , d[v] is the distance from s to v. Describe an O(m+n)-time algorithm
for this problem, prove that it’s correct, and analyze its running time.

BFS(G, s):

1 d = [∞] ∗ n; d[s] = 0
2 Q = queue(s)
3 while |Q| ≥ 1:
4 u = dequeue from Q
5 for v in G[u]:
6 if d[v] =∞:
7 d[v] = d[u] + 1; add v to Q

8 return d

Algorithm: Intuitively, we start at s and
work our way through the graph in “layers”
by visiting the out-neighbors of s, the out-
neighbors of those vertices, etc.

More formally, create a queue Q with just
s in it and set d[s] = 0. While Q is not
empty: dequeue a vertex u from Q and pro-
cess it. “Processing u” means looping through
each out-neighbor v of u and adding v to Q
if v has not been encountered before; if v gets
added to Q, set d[v] = d[u] + 1.

10

Correctness: Suppose the distance from s to some vertex v is k; we want to show that at the
end of BFS, d[v] = k. If k = 0, then s = v and d[v] = 0, as desired. If k > 0, then by induction on
k, there exists an in-neighbor u of v such that BFS set d[u] = k − 1 and added u to Q. When BFS
later removed u from Q, it set d[v] = d[u] + 1 = k.

Running time: Initializing d and Q takes O(n) + O(1) time. Every vertex gets added to Q at
most once, so the while-loop makes at most n iterations. It seems like processing u takes Ω(n)
time (since u could have Ω(n) out-neighbors), which results in a total running time is O(n2). This
is correct, but the analysis can be improved: processing u only requires O(out-deg(u)) time, and∑

u∈V out-deg(u) = m, so the overall running time is O(m+ n).

Remark

To find the shortest path (not just distance) from s to any vertex, we can maintain an array
p of parent pointers as we run BFS. In particular, whenever we set d[v] = d[u] + 1, we also
set p[v] = u. This indicates that in a shortest s-v path, u appears immediately before v. By
following p from v to s, we obtain a shortest path from s to v (in reverse order). Tracing
parent pointers will be useful for many other problems.

2.2 Depth-First Search

BFS is like water spreading across the surface of a table. In contrast, Depth-First Search (DFS) is
like running in a maze and leaving behind a trail of breadcrumbs. Whenever we reach a fork in the
road, we pick a direction and continue until we get stuck, at which point we backtrack along the
breadcrums and try another direction. In this section, we’ll describe DFS without any particular
problem in mind, and in the next two sections, we’ll give applications.

Explore(G, u):

1 pre[u] = t; t += 1
2 for v in G[u]:
3 if pre[v] =∞:
4 Explore(G, v)

5 post[u] = t; t += 1

Algorithm: Depth-First Search uses a recursive “Explore”
procedure, which popoulates two arrays, pre and post. If we
start exploring a vertex u at time t, we set pre[u] = t, and if
we stop exploring at time t′, we set post[u] = t′. DFS itself is
simply a wrapper around Explore. For each vertex u, if u has
not been explored, DFS calls Explore(G, u). While exploring
u, we also explore all vertices reachable from u (if they have
not already been explored).

DFS(G):

1 pre, post, t = [∞]∗n, [∞]∗n, 1
2 for u in V :
3 if pre[u] =∞:
4 Explore(G, u)

5 return pre, post

Classifying edges: After we run DFS, we can clas-
sify every edge (u, v) ∈ E into one of four types: tree,
forward, back, cross. Tree edges were directly traversed
by DFS, and their union is called the DFS tree. (Note
that a “DFS tree” could actually be a forest containing
multiple trees rooted at different vertices.) The other
three types of edges are all determined with respect to
the DFS tree T : (u, v) is a forward edge if there is a
path from u to v in T , (u, v) is a back edge if there is

a path from v to u in T , and (u, v) is a cross edge if it is not a tree, forward, or back edge.

11

Remark

Observe that (u, v) is a back edge if and only if pre[v] < pre[u] < post[u] < post[v]. Similarly,
(u, v) is a cross edge if and only if pre[v] < post[v] < pre[u] < post[u]. If pre[u] < pre[v] <
post[v] < post[u], then (u, v) is either a tree edge or a forward edge. No other ordering of
these four values can exist.

2.3 Cycle Finding

Problem Statement

The input is a directed graph G. Our goal is to return a directed cycle in G (or nothing if
none exists). Describe an O(m+ n)-time algorithm for this problem, prove that it’s correct,
and analyze its running time.

Find-Cycle(G):

1 run DFS(G); T = DFS tree
2 for u in V :
3 for v in G[u]:
4 if (u, v) is a back edge:
5 P = v-u path in T
6 return P + (u, v)

Algorithm: Run DFS to obtain pre- and post-
values and a DFS tree T . If there is a back edge
(u, v), then there is a path P from v to u in T , so we
can return P + (u, v) as a cycle in G.

Correctness: If (u, v) is a back edge, then (by def-
inition) there exists a path P from v to u in the DFS
tree T , so P + (u, v) is a cycle in G. Conversely, sup-
pose the graph has a cycle C. Let v denote the first
vertex in C explored by DFS, and let u denote the

vertex preceding v in C. Then during Explore(v), we call Explore(u), resulting in (u, v) being a
back edge.

Running time: Running DFS and constructing T take O(m+ n) time. Then we look for a back
edge, which takes O(1) time per edge. If we find one, we compute P in O(n) time using BFS (or
DFS) in T . Since T only has n − 1 edges, BFS(T) takes O(n) time, so the total running time is
O(m+ n) +m ·O(1) +O(n) = O(m+ n).

2.4 Topological Ordering

A topological ordering of a directed graph G = (V,E) is an ordering R of V such that for all
(u, v) ∈ E, u appears before v in R. We can visualize R as an arrangement of V in a horizontal line
such that every edge points from left to right. If G has a cycle (which we can detect in O(m + n)
time using the algorithm described above), then G does not have a topological ordering. So for the
sake of this problem, we can assume that the input is a directed acyclic graph (DAG).

Problem Statement

The input is a DAG G. Our goal is to return a topological ordering of G. Describe an
O(m + n)-time algorithm for this problem, prove that it’s correct, and analyze its running
time.

12

Algorithm: In short, we return V in order of decreasing post value. More specifically, we run a
slight modification of DFS on G: Whenever we set post[u], we add u to the front of a list R (initially
empty). At the end, we return R.

Topological-Sort(G):

1 R = [empty list]
2 DFS(G)
/* After post[u] = t, append

u to front of R */

3 return R

Correctness: Consider any edge (u, v); it suffices
to show that post[u] > post[v]. Note that there are
two possible cases: we call Explore(u) before calling
Explore(v), or vice versa. In the first case, while
exploring u, we will explore v because v is an out-
neighbor of u. Thus, we do not set post[u] until after
we set post[v], so post[u] > post[v]. In the second
case, since G is a DAG and (u, v) ∈ E, u is not
reachable from v. So we do not explore u until after

we finish exploring v, which also implies post[u] > post[v].

Running time: Appending to a list takes O(1) time, so this algorithm has the same asymptotic
running time as DFS, which is O(m+ n).

Remark

Any algorithm can be implemented in multiple ways. For example, Topological-Sort can also
be implemented as follows: run DFS to compute all post-values, then sort V by decreasing
post-values. This implementation is arguably easier to describe, but its running time depends
on that of the sorting algorithm.

2.5 Strongly Connected Components

A directed graph G = (V,E) is strongly connected if, for every u, v ∈ V , G contains a u-v path
and a v-u path. Notice that the strongly connected components of G partition V . Thus, a strongly
connected component (SCC) in a directed graph is analogous to a connected component in an
undirected graph. (Notice that G is a DAG if and only if every SCC is just a single vertex.)

Problem Statement

The input is a directed graph G. Our goal is to return an array c such that for all u, v ∈ V ,
u and v are in the same SCC if and only if c[u] = c[v]. Describe an O(m+ n)-time algorithm
for this problem, prove that it’s correct, and analyze its running time.

Algorithm: Construct the reverse graph GR of G by reversing every edge (i.e., (u, v) ∈ E(G)
becomes (v, u) ∈ ER(G)). Run DFS on GR to obtain post[u] for every u ∈ V . Then, for each u ∈ V
in order of decreasing post[u], run BFS to find the vertices reachable from u in G, and label these
as a strongly connected component.

Correctness: Consider the graph GSCC, where each vertex is a connected component Ci of G,
and (Ci, Cj) is an edge if there exists (u, v) ∈ E(G) such that u ∈ Ci and v ∈ Cj. Notice that GSCC

is a DAG.

13

SCC(G):

1 GR = reverse of G
2 pre, post = DFS(GR)
3 c, k = [∞] ∗ n, 1
4 for u ∈ V in decreasing order of post[u]:
5 if c[u] =∞:
6 BFS(G, u); k += 1

/* Set c[v] = k for all v
reached from u */

7 return c

We call C a source SCC if no edge in GSCC

enters C, and we call C a sink SCC if no
edge in GSCC leaves C. Ideally, we would
call BFS(G, u) where u is in a sink SCC and
label all vertices reached from u as an SCC.
Unfortunately, there is no simple way to find
a vertex in a sink SCC.

However, observe the following: sup-
pose H is a directed graph, we obtain
post-values by calling DFS(H), and we set
post[C] = maxu∈C post[u] for every SCC C
of H. Then, if we order the SCCs by de-
creasing post-values, the result is a topolog-

ical ordering of HSCC. (This is a generalization of the result in Section 2.4.)
By the observation above, the algorithm processes GR

SCC in topological order, which is equivalent
to processing GSCC reverse topological order. Thus, whenever the algorithm calls BFS, it labels
(ignoring vertices that have already been labeled) the vertices of some sink SCC of G.

Running time: Constructing GR and running DFS takes O(m+n) time. We then run BFS from
one vertex u per SCC; notice that this run of BFS only processes vertices that are reachable from
u and haven’t been processed before. Thus, the total running time is O(m+ n).

14

3 Greedy Algorithms

An algorithm is greedy if it iteratively constructs a solution by choosing the option that appears
optimal without considering how current decisions affect future options.

Overview

Section Summary Time

3.1: MST Prim’s: Starting with S = {1}, expand S by
adding the lightest edge crossing S. Kruskal’s:
Keep adding the lightest edge without creating a
cycle. Reverse-Delete: Keep deleting the
heaviest edge without disconnecting G.

O(m2)

3.2: Selecting Compatible
Intervals

Sort by non-decreasing end times, pick
compatible intervals in this order.

O(n log n)

3.3: Fractional Knapsack Sort items by non-decreasing v[i]/w[i], pick as
much of each item as possible in this order.

↑

3.1 Minimum Spanning Tree

A spanning tree of an undirected graph G = (V,E) is a graph T = (V, F) such that F ⊆ E and T
is connected; T is a minimum spanning tree (MST) if

∑
e∈F w(e) is as small as possible.

Problem Statement

The input is a connected, undirected graph G = (V,E) where each edge e has a distinct weight
w(e) ∈ Z. Our goal is to return a minimum spanning tree of G. Describe an O(m2)-time
algorithm for this problem, prove that it’s correct, and analyze its running time.

We can incorporate weights (and other edge attributes) into the adjacency list representation of
G as follows: for every u ∈ V and neighbor v of u, G[u] contains a pair (v, w) (rather than just v),
where w is the weight of the edge {u, v}.

Remark

Assuming that the edge weights in G are distinct allows us to prove (by an exchange argument
similar to the ones in this section) that G has exactly one MST. Thus, we can refer to the
(rather than an) MST of G. Even if the edge weights are not distinct, we can pretend that
they are by using a consistent tiebreaking function.

Instead of explicitly returning a tree T in adjacency list format, for convenience, we sometimes
simply return a list F of edges. In a similar vein, we sometimes say things like “F is a subset of T”
even if neither F nor T is technically a set. Converting F to T is a relatively straightforward task
that can be completed in linear time.

We will describe three algorithms that all run in O(m2) time (or faster): Prim’s algorithm,

15

Kruskal’s algorithm, and Reverse-Delete. But first, we prove a property about MSTs known as the
Cut Property. A cut is a subset of vertices, and an edge crosses a cut if has exactly one endpoint
in the cut.

Cut Property

For any cut S in G, the lightest edge crossing S is in the MST of G.

Proof: For contradiction, assume there exists a cut S such that the lightest edge e crossing
S is not in the MST T of G. Notice that T ∪ {e} contains a cycle C that includes e. Since
e crosses S, some other edge f ∈ C must cross S as well, and since e is the lightest edge
crossing S, we must have w(e) < w(f). Thus, T ′ = T + e − f is a spanning tree and T ′ is
lighter than T ; this contradicts our assumption that T is the MST of G.

Using the Cut Property, we can prove the correctness of Prim’s and Kruskal’s algorithms.

Prim’s Algorithm

Algorithm: Let S = {1} (recall that V = [n]). Repeat the following n−1 times: find the lightest
edge e crossing S, add the endpoint of e not in S to S, and add e to F . Return F .

Prim(G):

1 S = {1}; F = [empty list]
2 for i = 1, . . . , n− 1:
3 e = lightest edge crossing S
4 v = endpoint of e not in S
5 add v to S; add e to F

6 return F

Although S is a set, implementations of sets typically
require hashing. We can avoid the complexities of
hashing by implementing S as a binary array, where
S[u] = 1 if and only if u ∈ S. In other words, S = {1}
is equivalent to “S = [0] ∗ n; S[1] = 1” and “add v
to S” is equivalent to “S[v] = 1”.

Correctness: In each iteration of Prim’s algo-
rithm, we add the lightest edge crossing S to F . By
the Cut Property, this edge is in the MST T , so F is

always a subset of T . Since the algorithm terminates when F has n − 1 edges, and any spanning
tree has exactly n− 1 edges, it returns the MST of G. (As noted earlier, converting F to adjacency
list format is relatively straightforward, linear-time task.)

Running time: The algorithm makes n − 1 iterations, and each iteration involves finding the
lightest edge, which takes O(m) time. Thus, the total running time is O(mn) = O(m2).

Kruskal’s Algorithm

Algorithm: Sort E by increasing weight. For each edge e in this order, add e to a list F (initially
empty) if F + e is acyclic. Return F .

Correctness: Consider any edge e = {u, v} added to F , and let S denote the set of vertices
connected to u via F immediately before e was added to F . At this point, e is the lightest edge
that could be added to F without creating a cycle, so e is the lightest edge that crosses S. So by
the Cut Property, F is always a subset of the MST.

16

Kruskal(G):

1 sort E by increasing weight
2 F = [empty list]
3 for e in E :
4 if F + e is acyclic:
5 add e to F

6 return F

To show that F is spanning, we assume there exists a cut
S ′ such that no edge crossing S ′ is in F . This contradicts
the behavior of the algorithm, since F + e is acyclic for
any edge e that crosses S ′.

Running time: Sorting E takesO(m logm) time. The
algorithm then makes m iterations, and in each iteration,
we need to check if F + e is acyclic. We can do this in
O(n) time as follows: run BFS to check if the endpoints
of e are connected in the graph (V, F). Normally, BFS

takes O(m + n) time, but (V, F) has at most n − 1 edges, so it only takes O(n) time in this case.
Thus, the total running time is O(m logm) +m ·O(n) = O(mn) = O(m2).

Remark

There is often a tradeoff between simplicity and speed among the different implementations of
the same algorithm. For example, Prim’s algorithm can be implemented in O(m log n) time
using a heap-based priority queue, and Kruskal’s algorithm can be implemented in O(m log n)
time using an array-based Union-Find data structure.

Reverse-Delete

We now introduce another property about MSTs and use it to prove the correctness of the Reverse-
Delete algorithm.

Cycle Property

For any cycle C in G, the heaviest edge in C is not in the MST of G.

Proof: This proof, like that of the Cut Property (and many correctness proofs of greedy
algorithms), uses an exchange argument. For contradiction, assume there exists a cycle C
whose heaviest edge f is in the MST T of G. Notice that removing f from T creates a
cut S. Some other edge e in C must cross S, and since f is the heaviest edge in C, we have
w(e) < w(f). Thus, T ′ = T+e−f is a spanning tree and T ′ is lighter than T ; this contradicts
our assumption that T is the MST.

Algorithm: (This algorithm is a backward version of Kruskal’s algorithm.) Sort E by decreasing
weight. For each edge e in this order, remove e from G if G− e is connected. Return G.

Correctness: When the algorithm removes an edge e from G, G remains connected, so e must
be the heaviest edge in some cycle in G. Thus, by the cycle property, e is not in the MST, which
means that the MST T is contained in G throughout the algorithm. We want to show that at the
end of the algorithm, G is acyclic.

17

Reverse-Delete(G):

1 sort E by decreasing weight
2 for e in E :
3 if G− e is connected:
4 remove e from G

5 return G

For contradiction, suppose G contains a cycle C at the
end of the algorithm, and let f denote the heaviest edge
in C. This contradicts the behavior of the algorithm,
since f could have been removed from G without dis-
connecting it.

Running time: (This analysis is also similar to that
of Kruskal’s algorithm.) Sorting E takes O(m logm)
time. We can check if G − e is connected by running

BFS, which takes O(m+n) = O(m) time. Removing e from G takes O(n) = O(m) time, so each of
the m iterations takes O(m) time. Thus, the total running time is O(m logm)+m ·O(m) = O(m2).

3.2 Selecting Compatible Intervals

An interval is an array of two positive integers [s, t] such that s < t. We think of an interval as an
event, where s is the “start time” and t is the “end time.” In the following problem, we’re given an
array of events, and we want to attend as many as possible.

Problem Statement

The input is an array A of n intervals. A list of intervals is compatible if no two intervals
in the list conflict at any point in time. Our goal is to return a list of compatible intervals
that contains as many intervals as possible. Describe an O(n log n)-time algorithm for this
problem, prove that it’s correct, and analyze its running time.

Here is a generic greedy algorithm for this problem: “Among all intervals compatible with S,
keeping adding the interval e according to some criterion C.” And here are four possible choices
for the criterion C: e starts the earliest, e is the shortest, e overlaps with the fewest number of
remaining intervals, e ends the earliest. All four criteria might sound plausible, but only the fourth
leads to an optimal algorithm.

Remark

Sometimes, it is relatively easy to find a counterexample showing that an algorithm is not
optimal. Other times, it is quite challenging! In those cases, we can alternate between finding
a counterexample and proving that the algorithm is actually optimal.

Algorithm: Sort A by non-decreasing end time and create an empty list S. For each interval e
in this order, if e does not conflict with the last interval in S, add e to the end of S. (Notice that
if e conflicts with any interval in S, e must conflict with the last interval in S.) Return S.

Correctness: Let ALG and OPT denote the the algorithm’s solution and the optimal solution,
respectively, each sorted by non-decreasing end time; also, let m = |ALG|. If ALG[i] = OPT[i] for all
i ∈ [m], then the algorithm is optimal. Otherwise, let i ∈ [m] denote the smallest index such that
ALG[i] ̸= OPT[i]. We will construct another optimal solution OPT′ such that ALG[j] = OPT[j] for
all j ∈ [i]. Notice that this suffices because, by repeating the exchange procedure, we can eventually
arrive at an optimal solution that agrees with ALG for all i ∈ [m].

18

The key is that OPT[i] cannot end before ALG[i] because the algorithm is greedy: the algorithm
chose ALG[i] because it was compatible with the i − 1 previously chosen intervals and it had the
smallest end time. So we construct OPT′ as follows: start with OPT, remove OPT[i], and add
ALG[i]. Notice that OPT′ is feasible, |OPT′| = |OPT|, and ALG[j] = OPT[j] for all j ∈ [i]. Thus,
as mentioned above, we can repeat this exchange argument until we arrive at an optimal solution
that agrees with ALG for all i ∈ [m].

Select-Intervals(A):

1 sort A by non-decreasing end time
2 S = [empty list]
3 for e in A:
4 if e does not conflict with the last interval in S :
5 add e to the end of S

6 return S

Running time: Sorting A takes O(n log n) time, and each of the n iterations takes O(1) time, so
the total running time is O(n log n).

3.3 Fractional Knapsack

Suppose we’re selecting items to pack in our knapsack (i.e., backpack). Each item i has a value v[i]
(e.g., 5 dollars) and weight w[i] (2 pounds), and our knapsack has a capacity B (8 pounds). We
want to maximize the total value in our knapsack, but the total weight must be at most B. In the
Fractional Knapsack problem, we’re allowed to split items (e.g., if we take 20% of item 3, our total
value increases by v[3]/5 and our total weight increases by w[3]/5). (In Section 4.4, we’ll solve the
0/1 Knapsack problem, in which we cannot split any item.)

Problem Statement

The input is (v, w,B), where v and w are arrays of n positive integers each and B ∈ Z+.
Our goal is to return an array x of n real numbers such that 0 ≤ x[i] ≤ 1 for all i ∈ [n],∑n

i=1 x[i] · w[i] ≤ B, and
∑n

i=1 x[i] · v[i] is maximized.

Fractional-Knapsack(v, w,B):

1 sort items by non-increasing v[i]/w[i]
2 x = [0] ∗ n
3 for each item i:
4 increase x[i] by as much as possible
5 return x

Algorithm: Sort the items by non-
increasing v[i]/w[i]. In this order, pick as
much of each item as possible without the
total weight exceeding B. (Notice that the
algorithm returns at most one x[i] ̸∈ {0, 1}.)

Correctness: Let ALG denote the algo-
rithm’s solution, and let OPT denote an op-
timal solution. For any solution y, let v(y)

denote the value of y. For contradiction, assume v(OPT) > v(ALG); let i denote the smallest

19

index such that OPT[i] ̸= ALG[i]. By design of the algorithm, we must have OPT[i] < ALG[i].
Furthermore, since v(OPT) > v(ALG), there must exist some j > i such that OPT[j] > 0.

We will construct another optimal solution OPT′. More specifically, we obtain OPT′ by modi-
fying OPT as follows: increase OPT[i] by some ϵ > 0 and decrease OPT[j] by ϵw[i]/w[j]. Note that
if ϵ is small enough, then OPT′ is feasible; in fact, it has the same weight as OPT. Now consider
the value of OPT′:

v(OPT′) = v(OPT) + ϵ · vi −
ϵwi

wj

· vj = v(OPT) + ϵ ·
(
vi −

wi

wj

· vj
)
≥ OPT,

where the inequality follows from ϵ > 0 and vi/wi ≥ vj/wj. Thus, OPT
′ is also an optimal solution

but it takes more of item i than OPT does. By repeating this process, we can arrive at an optimal
solution identical to ALG.

Remark

For every greedy algorithm ALG we’ve seen, the correctness proof uses an exchange argument:
assume that OPT forgoes a greedy choice, construct another optimal solution OPT′ that makes
the greedy choice instead, and show that OPT′ is either “more optimal” than OPT or “more
similar” to ALG. Either way, we can conclude that ALG is optimal.

Running time: Sorting takes O(n log n) time, and each of the n iterations takes O(1) time, so
the total running time is O(n log n).

20

4 Dynamic Programming

Dynamic programming can be summarized as “recursion with a table.” The idea is to solve a
sequence of increasingly larger subproblems by using solutions to smaller subproblems.

Overview

Section Summary Time

4.1: Max in Array OPT[i] = max(A[1 : i]) = max(OPT[i− 1], A[i]). O(n)

4.2: LIS OPT[i] = length of LIS in A[1 : i] ending at A[i]
= 1 + maxj<i,A[j]<A[i] OPT[j].

O(n2)

4.3: LPS OPT[i][j] = length of LPS in A[i : j] = 2 + OPT[i+ 1][j −
1] if A[i] = A[j], else max(OPT[i+ 1][j],OPT[i][j − 1])

↑

4.4: 0/1 Knapsack OPT[i][j] = maximum value with items [i] available and
capacity j = max(OPT[i− 1][j], v[i] +OPT[i− 1][j −w[i]]).

O(nB)

4.5: Edit Distance OPT[i][j] = Edit-Distance(A[1 : i], B[1 : j]) =
min(OPT[i][j−1]+1,OPT[i−1][j]+1,OPT[i−1][j−1]+δij).

O(mn)

4.6: MIS in Trees OPTin[u]/OPTout[u] = value of MIS in Tu that
includes/excludes u, OPTin[u] = w(u) +

∑
v∈T [u] OPTout[v],

OPTout[u] =
∑

v∈T [u] max(OPTin[v],OPTout[v]).

O(n)

When presenting a dynamic programming (DP) algorithm, the format described below is clearer
than the usual (i.e., “algorithm, correctness, running time”).

Format for DP Algorithms

1. Subproblems: Which subproblems will we solve? What will we return?

2. Recurrence: How can we solve each subproblem using solutions to smaller subproblems?
What are the base cases? Why does the recurrence hold?

3. Algorithm: How do we use the recurrence to populate a DP table (i.e., array d)?

4. Running time: What is the running time of the algorithm? (This is typically (number
of problems) × (time per subproblem).)

When explaining the logic behind an algorithm, we generally refer to “the” optimal solution of
a problem even though multiple optimal solutions could exist. But all of them are equally valid, so
it’s fine for us to focus on just one of them. (This applies throughout these notes.)

4.1 Max in Array

Let’s use dynamic programming to solve a familiar problem.

21

Problem Statement

The input is an array A of n distinct, positive integers. Our goal is to return the largest
integer in A. Describe an O(n)-time algorithm for this problem, prove that it’s correct, and
analyze its running time.

Subproblems: For all i ∈ [n], let OPT[i] = max(A[1 : i]); we will return OPT[n].

Recurrence: The base case is OPT[1] = A[1]. For all i ≥ 2, OPT[i] = max(OPT[i− 1], A[i]).

Max-in-Array-DP(A):

1 d = [A[1]] ∗ n
2 for i = 2, . . . , n:
3 d[i] = max(d[i−1], A[i])
4 return d[n]

The recurrence holds because max(A[1 : i]) is either the
largest integer in A[1 : i − 1] (i.e., OPT[i − 1]), or it is
A[i]; OPT[i] “picks” the larger option.

Algorithm: Initialize d = [A[1]] ∗ n. For i ≥ 2, set d[i]
according to the recurrence for OPT[i] above. That is,
set d[i] = max(d[i− 1], A[i]). At the end, return d[n].

Running time: The algorithm makes n− 1 iterations, and each iteration takes O(1) time, so the
total running time is O(n).

Remark

When describing a DP algorithm, we use “d” instead of “OPT” to indicate a distinction
between the reasoning behind the algorithm itself (i.e., arrays, loops, etc.) and the reasoning
behind the algorithm (i.e., subproblems, recurrence, etc.).

4.2 Longest Increasing Subsequence

A subsequence of an array A is a subarray of A, but with some elements possibly skipped. For
example, some subsequences of A = [3, 5, 5, 1, 3, 2] are [3, 5, 3], [5], and [5, 2]. Note that [1, 5] and
[1, 1] are not subsequences of A.

Problem Statement

The input is an array A of n integers. Our goal is to return the length of the longest increasing
subsequence (LIS) of A. Describe an O(n2)-time algorithm for this problem, prove that it’s
correct, and analyze its running time.

Subproblems: For all i ∈ [n], let OPT[i] denote the length of the LIS of A that must end on A[i].
Since the LIS of A must end somewhere, we will return maxi OPT[i].

Remark

It might seem more natural to let OPT[i] denote the length of the LIS of A[1 : i]. This is a
reasonable idea, but it’s not clear how we can solve these subproblems by following a recur-
rence. In general, in any DP algorithm, it is not necessarily the case that each subproblem is

22

strictly a smaller version of the original problem.

Recurrence: The base case is OPT[1] = 1. Intuitively, we calculate OPT[i] for all i ≥ 2 by finding
the “best” entry A[j] to “come from” before “jumping” to A[i]. Note that A[j] is an option if and
only if j < i and A[j] < A[i]. More formally, for any i ≥ 2, OPT[i] satisfies the following recurrence:

OPT[i] = 1 + max
j∈C

OPT[j],

where C = {j | j < i and A[j] < A[i]} denotes the set of “candidates” we consider when calculating
OPT[i]. (If C = ∅, OPT[i] = 1.)

LIS(A):

1 d = [1] ∗ n
2 for i = 2, . . . , n:
3 for j = 1, . . . , i− 1:
4 if A[j] < A[i] and d[i] < 1 + d[j]:
5 d[i] = 1 + d[j]

6 return max(d)

In other words, the LIS S that ends on A[i]
must be of the form S = T + A[i], where T
is an LIS that ends on A[j] for some j ∈ C.
By finding the maximum OPT[j] over all all
j ∈ C, we correctly calculate OPT[i].

Algorithm: Calculate d[i] according to
the recurrence for OPT[i] above and return
max(d).

Running time: We calculate each d[i] in O(i) time, so the total running time is O(n2).

Remark

To find the LIS itself (as opposed to just its length), we can maintain an array of parent
pointers as we did in BFS (Section 2.1). More specifically, whenever we update d[i] = 1+d[j],
we also set p[i] = j to indicate that OPT[i] is obtained from appending A[j] to OPT[j]. Given
d and p, we can trace p to recover the LIS itself in O(n) time.

4.3 Longest Palindromic Subsequence

A subsequence S is palindromic if S is equal to the reverse of itself. For example, if A = abracadabra,
then aca and abba are palindromic subsequences of A.

Problem Statement

The input is an string A of length n. Our goal is to return the length of a longest palindromic
subsequence (LPS) of A. Describe an O(n2)-time algorithm for this problem, prove that it’s
correct, and analyze its running time.

Subproblems: For all i ∈ [n − 1] and j ∈ [i, n], let OPT[i][j] denote the length of an LPS in
A[i : j]. We will return OPT[1][n]. We can visualize the DP table as an n × n square, but we are
only concerned with the values in the upper-right triangle.

23

Recurrence: If i = j, then A[i : j] is just a single character, so OPT[i][i] = 1. If i < j and
A[i] = A[j], then the LPS of A[i : j] starts with A[i], ends with A[j], and contains an LPS of
A[i + 1 : j − 1] in between. Otherwise, if A[i] ̸= A[j], then the LPS of A[i : j] must exclude A[i] or
A[j]. In summary,

OPT[i][j] =

{
OPT[i+ 1][j − 1] + 2 if A[i] = A[j]

max(OPT[i+ 1][j],OPT[i][j − 1]) otherwise.

LPS(A):

1 d = [0] ∗ (n× n)
2 for i = n, . . . , 1:
3 d[i][i] = 1 // base case

4 for j = i+ 1, . . . , n:
5 if A[i] = A[j]:
6 d[i][j] = d[i+ 1][j − 1] + 2
7 else:
8 d[i][j] = max(d[i+1][j], d[i][j−1])
9 return d[1][n]

Algorithm: Each OPT[i][j] depends
on entries below and to the left of it,
so one way to fill the DP table is row
by row, starting with the last row. In
each row, we set d[i][j] according to the
recurrence above. At the end, we return
d[1][n].

Running time: The DP table has
O(n2) entries, and each entry takes O(1)
time to compute, so the total running
time is O(n2).

4.4 0/1 Knapsack

Now we’ll consider a problem with multiple parts and see how we can shrink them simultaneously.
Recall that in Knapsack problem (Section 3.3), v is an array of item values, w is an array of item
weights, and B is the capacity of the knapsack.

Problem Statement

The input is (v, w,B), where v and w are arrays of n positive integers each and B ∈ Z+. For
any S ⊆ [n], S is feasible if

∑
i∈S w[i] ≤ B, and the value of S is

∑
i∈S v[i]. Our goal is to

return the maximum value over all feasible solutions. Describe an O(nB)-time algorithm for
this problem, prove that it’s correct, and analyze its running time.

Subproblems: For all i ∈ [n] and j ∈ {0, 1, . . . , B}, let OPT[i][j] denote the optimal value if we
could only select items from [i] and the knapsack only had capacity j. We will return OPT[n][B].

Recurrence: The base cases are OPT[1][j] = 0 for all j < w[1] and OPT[1][j] = v[1] for all
j ≥ w[1]. For i ≥ 2, let Sij ⊆ [i] denote the optimal solution for OPT[i][j]. Notice that Sij either
contains item i or it doesn’t. If w[i] > j, then Sij cannot contain i, so OPT[i][j] = OPT[i − 1][j].
Otherwise, Sij either ignores i, or includes it to obtain value v[i] and fills the rest of its knapsack
with value OPT[i− 1][j − w[i]]. In summary,

OPT[i][j] =

{
OPT[i− 1][j] if w[i] > j

max(OPT[i− 1][j], v[i] + OPT[i− 1][j − w[i]]) otherwise.

24

Knapsack-DP(v, w,B):

1 d = [0] ∗ (n× (B + 1))
2 for j = 1, . . . , B :
3 if j ≥ w[1]:
4 d[1][j] = v[1] // base case

5 for i = 2, . . . , n:
6 for j = 1, . . . , B :
7 if j < w[i]:
8 d[i][j] = d[i− 1][j] // we must ignore item i
9 else:

// we can ignore or include item i
10 d[i][j] = max(d[i− 1][j], v[i] + d[i− 1][j − w[i]])

11 return max(d)

Algorithm: We populate an array d of size n× (B + 1) according to the recurrence above. (The
row indices are {1, . . . , n}, and the column indices are {0, 1, . . . , B}.) Again, we can populate d in
multiple ways; the code above goes row by row. Any order would be correct, as long as we calculate
OPT[i][j] after we’ve calculated OPT[i− 1][j] and OPT[i− 1][j − w[i]].

Running time: The DP table has n(B +1) entries, and each entry takes O(1) time to compute,
so the total running time is O(nB).

4.5 Edit Distance

If A and B are strings, the edit distance from A to B is a non-negative integer that represents the
“distance” from A to B. More specifically, it is the minimum number of “moves” we need to make
to turn A into B. There are three valid types of moves: insert a character (anywhere in A), delete a
character (anywhere from A), and replace one character with another. (A replacement is equivalent
to a deletion followed by an insertion, but it counts as one move rather than two.)

Problem Statement

The input is (A,B), where A and B are strings of length m and n, respectively. Our goal is
to return the edit distance from A to B. Describe an O(mn)-time algorithm for this problem,
prove that it’s correct, and analyze its running time.

Subproblems: For all i ∈ {0, 1, . . . ,m} and j ∈ {0, 1, . . . , n}, let OPT[i][j] denote the edit
distance from A[1 : i] to B[1 : j]. We will return OPT[m][n].

Recurrence: The base cases are OPT[0][j] = j and OPT[i][0] = i. (Editing the empty string to
a string of length j takes j insertions, and editing a string of length i into the empty string takes i
deletions.) Now suppose i ≥ 1 and j ≥ 1. Since OPT[i][j] edits A[1 : i] such that its last character
is B[j], it must make one of the following three moves:

25

1. Edit A[1 : i] into B[1 : j − 1] and insert B[j].

2. Edit A[1 : i− 1] into B[1 : j] and delete A[i].

3. Edit A[1 : i−1] into B[1 : j−1] and replace A[i] with B[j]. Note that this “replacement” costs
0 if A[i] = B[j] and 1 otherwise.

This implies that OPT[i][j] satisfies the following recurrence:

OPT[i][j] = min

OPT[i][j − 1] + 1

OPT[i− 1][j] + 1

OPT[i− 1][j − 1] + δij

where δij = 0 if A[i] = B[j] and 1 otherwise.

Edit-Distance(A,B):

1 d = [0] ∗ ((m+ 1)× (n+ 1))
2 for j = 1, . . . , n:
3 d[0][j] = j // fill row 0

4 for i = 1, . . . ,m:
5 d[i][0] = i // fill column 0

6 for i = 1, . . . ,m:
7 for j = 1, . . . , n:
8 d[i][j] = min(d[i][j − 1] + 1, d[i− 1][j] + 1)
9 if A[i] = B[j]:

10 d[i][j] = min(d[i][j], d[i− 1][j − 1])
11 else:
12 d[i][j] = min(d[i][j], d[i− 1][j − 1] + 1)

13 return d[m][n]

Algorithm: As usual, we populate an array d according to the recurrence above. (The row indices
are {0, 1, . . . ,m} and the column indices are {0, 1, . . . , n}.) There are multiple ways to populate d;
again, we go one row at a time, and within each row, we go from left to right.

Remark

It can be proven that if A[i] = B[j], then OPT[i][j] = OPT[i−1][j−1]. (This is similar to the
A[i] = A[j] case in LPS.) Using this fact alone, we cannot improve the asymptotic running
time of the algorithm, but it does speed up the process of running the algorithm by hand.

Running time: The DP table has (m + 1)(n + 1) = O(mn) entries, and each entry takes O(1)
time to compute, so the total running time is O(mn).

26

4.6 Independent Set in Trees

As we’ve seen, dynamic programming works by turning the original problem into subproblems. If
the input is an array A, each subproblem often corresponds to a prefix of A. In this section, we’ll
apply the same idea to trees: if the input is a tree T , each subproblem corresponds to a subtree of
T . We will simultaneously see an additional technique: for each subtree of T , we will define two
subproblems tied together by their recurrences.

For any undirected graph G, a subset S of vertices is an independent set if no edge in G has
both endpoints in S. If every vertex u has a weight w(u), the weight of S is

∑
u∈S w(u). (If weights

are not given, we assume every vertex has weight 1.) A maximum independent set (MIS) is an
independent set whose weight is as large as possible.

Problem Statement

The input is (T,w), where T = (V,E) is a tree rooted at vertex 1 and w[u] ∈ Z+ is the weight
of vertex u ∈ V . (For every vertex u, T [u] is a list of u’s children.) Our goal is to return
the weight of a maximum independent set in T . Describe an O(n)-time algorithm for this
problem, prove that it’s correct, and analyze its running time.

Subproblems: For all u ∈ V , let Tu denote the subtree of T rooted at u. We define two subprob-
lems per Tu: let OPTin[u] denote the weight of the MIS in Tu that includes u, and let OPTout[u]
denote the weight of the MIS in Tu that excludes u. Since the original tree is T1 and the MIS in T1

either includes or excludes vertex 1, we will return max(OPTin[1],OPTout[1]).

Remark

The definition of OPTin[u] is similar to that of OPT[i] for the LIS problem (Section 4.2): in
both subproblems, we are required to include the index of the subproblem as part of the
solution. In contrast, for 0/1 Knapsack, it is not required that the solution for OPT[i][j] must
include item i. However, the logic below is similar to the logic behind 0/1 Knapsack.

Recurrence: If u is a leaf, then Tu is just u, so OPTin[u] = w(u) and OPTout[u] = 0. Now suppose
u is not a leaf. The solution S to OPTin[u] includes u, so for each v ∈ T [u], S contains an MIS in
Tv that excludes v. This implies

OPTin[u] = w(u) +
∑

v∈T [u]

OPTout[v].

On the other hand, the solution S ′ to OPTout[u] excludes u, which means for each v ∈ T [u], S ′ is
free to either include or exclude v. This implies

OPTout[u] =
∑

v∈T [u]

max(OPTin[v],OPTout[v]).

Algorithm: We populate two arrays, din and dout, according to the recurrences above. For any
u ∈ V , when computing din[u] and dout[u], we need to make sure that dout[v] and dout[v] have both
already been computed for every child v ∈ T [u]. Thus, if we visualize the root as the top of the
tree, we need to work our way up the tree.

27

MIS-Tree(T,w):

1 din, dout = [0] ∗ n, [0] ∗ n
2 sort V in reverse topological order
3 for u ∈ V :
4 din[u] = w[u]
5 for v ∈ T [u]:
6 din[u] += dout[v]
7 dout[u] += max(din[v], dout[v])

8 return max(din[1], dout[1])

One way to do this is the following: if v ∈ T [u],
treat (u, v) as a directed edge, process V in re-
verse topological ordering (Section 2.4). This
ensures that when we’re computing din[u] and
dout[u], we’ve already computed din[v] and dout[v]
for every v ∈ T [u], as desired. At the end, re-
turn max(din[1], dout[1]).

Running time: Computing a topological or-
der takes O(m + n) time. Since T is a tree,
m = n−1, so O(m+n) = O(n). For each vertex
u, computing din[u] and dout[u] takes O(|T [u]|)

time. Since
∑

u|T [u]| = m = O(n), the total running time is O(n) +O(n) = O(n).

Summary

We conclude this chapter with a list of common DP patterns. In the next chapter, we’ll see more
dynamic programming!

Common DP Patterns

If the input is...

- A, an array of length n:

1. ∀i ∈ [n] : OPT[i] = OPT given A[1 : i]

2. ∀i ∈ [n] : OPT[i] = OPT given A[i :n]

3. ∀i ∈ [n] : OPT[i] = OPT given A[1 : i] that somehow involves A[i]

4. ∀i ∈ [n]∀j ∈ [i, n] : OPT[i][j] = OPT given A[i : j]

- (A, k), where A is an array of length n and k is a non-negative integer:

5. ∀i ∈ [n]∀j ∈ {0, 1, . . . , k} : OPT[i][j] = OPT given (A[1 : i], j)

- (A,B), where A and B are arrays of length m and n:

6. ∀i ∈ [m]∀j ∈ [n] : OPT[i][j] = OPT given (A[1 : i], B[1 : j])

- T , a rooted tree with vertex set V :

7. ∀u ∈ V : OPT[u] = OPT given Tu

8. ∀u ∈ V : OPT[u] = OPT given Tu that somehow involves u

28

5 Shortest Paths

Many algorithms for the shortest path problem use dynamic programming.

Overview

Section Summary Time

5.1: DAG DP OPT[v] = distance from s to v
= minu:(u,v)∈E OPT[u] + ℓ(u, v).

O(m+n)

5.2: Bellman-Ford OPT[v][j] = length of shortest walk from s to v
containing at most j edges
= min{OPT[v][j − 1],minu OPT[u][i− 1] + ℓ(u, v)}

O(mn)

5.3: Dijkstra’s Algorithm BFS but in each iteration, process the vertex with
the smallest d-value (i.e., queue → priority queue).

O(n2)

5.4: Floyd-Warshall OPT[u][v][r] = distance from u to v with [r]
available as intermediate vertices
= min{OPT[u][v][r − 1],OPT[u][r][r − 1] +
OPT[r][v][r − 1]}.

O(n3)

Sections 5.1 through 5.3 consider variants of the Single-Source Shortest Path (SSSP) problem
described below. Section 5.4 considers the All-Pairs Shortest Path (APSP) problem.

Problem Statement

SSSP: The input is (G, s), where G is a directed graph with edge lengths ℓ, and a “source”
vertex s ∈ V . Our goal is to return the shortest paths from s to all v ∈ V .

The algorithms in this section only return an array d such that d[v] is the distance from s to v.
But as usual, we can maintain parent pointers and trace them at the end to recover the shortest
paths themselves.

5.1 DAG DP

Problem Statement

SSSP, where G is a DAG. Describe an O(m+ n)-time algorithm for this problem, prove that
it’s correct, and analyze its running time.

Subproblems: For all v ∈ V , let OPT[v] denote the distance from s to v. We will return d = OPT.

Recurrence: The base case is OPT[s] = 0. For all v ̸= s, we have

OPT[v] = min
u:(u,v)∈E

OPT[u] + ℓ(u, v)

29

since the shortest path P from s to v must arrive at some in-neighbor u of v and traverse the edge
ℓ(u, v). The subpath of P from s to u must be a shortest path from s to u.

Algorithm: Before computing d[v], we need to compute d[u] for every in-neighbor u of v, so
we process V in topological order. (This is like Section 4.6 but flipped.) We also need to iterate
through the in-neighbors of v, but G[u] only contains the out-neighbors of u.

DAG-DP(G, s):

1 d = [∞] ∗ n d[s] = 0
2 sort V in topological order
3 G′ = G with each edge reversed
4 for v ∈ V :
5 for u ∈ G′[v]:
6 d[v] = min(d[v], d[u]+ℓ(u, v))

7 return d

Computing the in-neighbors of v could take
Ω(m) time, which is too slow. So instead, we
pre-compute the in-neighbors of every vertex by
creating a separate G′, which is G but with ev-
ery edge reversed, so in-neighbors in G are out-
neighbors in G′.

Running time: We can sort V in topologi-
cal order using DFS (Section 2.2) in O(m+ n),
and we can also compute G′ in O(m+ n) time.
Computing d[v] takes O(in-deg(v)) time, and

the sum of in-degrees is m. Thus, the total running time is O(m+ n).

Edge relaxations

In DAG-DP, we update d[v] by setting d[v] = min(d[v], d[u] + ℓ(u, v)); this operation is known as
“relaxing” the edge (u, v). Intuitively, when we relax (u, v), we’re checking if we can decrease our
current estimate of the distance from s to v by following an s-u path plus the edge (u, v). As we’ll
see, edge relaxations also play an important role in other shortest path algorithms.

5.2 Bellman-Ford

A cycle C is a negative cycle if
∑

e∈C ℓ(e) < 0. If G has a negative cycle C, it’s unclear what we
mean by “shortest path” because if a path P can reach C, we can keep making P “shorter” by
cycling around C. One idea is to forbid paths from repeating vertices, but then the SSSP problem
becomes much more difficult.1 So let’s assume that G has no negative cycles.

Problem Statement

SSSP, where G has no negative cycles. Describe an O(mn)-time algorithm for this problem,
prove that it’s correct, and analyze its running time.

Subproblems: For all v ∈ V and j ∈ {0, 1, . . . , n − 1}, let OPT[v][j] denote the length of the
shortest s-v walk that contains at most j edges. Since G has no negative cycles, every shortest walk
has at most n− 1 edges, so we will return OPT[·][n− 1] (i.e., the last column of the DP table).

1More specifically, the problem becomes NP-hard, which means it appears to be impossible to solve in polynomial
time (see Chapter 7). Also, a path is not allowed to repeat vertices by definition, but in this context, it’s common
to use “path” when we really mean “walk.”

30

Recurrence: The base cases are OPT[s][0] = 0 and OPT[v][0] =∞ for all v ∈ V \ {s}. If j ≥ 1,
then the path for OPT[v][j] either contains at most j − 1 edges, or it consists of an s-u path that
contains at most j − 1 edges followed by the edge (u, v). This means

OPT[v][j] = min(OPT[v][j − 1], min
u:(u,v∈E

OPT[u][j − 1] + ℓ(u, v)).

Remark

One way to think of Bellman-Ford is the following: we want to apply the recurrence from
DAG-DP, but cycles in G create dependency problems. However, we can still “shrink” the
SSSP problem by drawing inspiration from 0/1 Knapsack (Section 4.4). To solve that problem,
we shrunk the knapsack capacity from B to j; similarly, in Bellman-Ford, we shrink the
number of edges we can use from n− 1 to j.

Algorithm: Column j depends on column j−1, so we compute the recurrence column by column.
Within column j, we calculate every d[v][j] according to the recurrence. Again, when considering
vertex v, we need to access the in-neighbors of v, so we start by computing G′ = G with each edge
reversed.

Bellman-Ford(G, s):

1 d = [∞] ∗ (n× n); d[s][0] = 0
2 G′ = G with each edge reversed
3 for j = 1, . . . , n− 1:
4 for v ∈ V :
5 d[v][j] = d[v][j − 1]
6 for u ∈ G′[v]:
7 d[v][j] = min(d[v][j], d[u][j − 1] + ℓ(u, v))

8 return d[·][n− 1] // return last column of d

Notice that in round j of the algorithm, we relax every edge, and the order in which we relax
these edges does not matter. Furthermore, since column j only depends on column j − 1, our DP
table does not actually need to store n separate columns.

Bellman-Ford-2(G, s):

1 d = [∞] ∗ n; d[s] = 0
2 for j = 1, . . . , n− 1:
3 for (u, v) ∈ E :
4 d[v] = min(d[v], d[u]+ℓ(u, v))

5 return d

In fact, it suffices for the algorithm to store just
one column (i.e., one value d[v] per v ∈ V) and
overwrite the values in this column as necessary.
This leads us to Bellman-Ford-2, another imple-
mentation of essentially the same algorithm.

Running time: In both implementations, the
algorithm makes n − 1 rounds. In each round,
each of the m edges gets relaxed, and relaxing

an edge takes O(1) time. Thus, the total running time is O(mn).

31

5.3 Dijkstra’s algorithm

If all edge lengths are non-negative, then we can run Dijkstra’s algorithm, which is closely related
to both BFS (Section 2.1) and Prim’s algorithm (Section 3.1).

Problem Statement

SSSP, where all edge lengths are non-negative. Describe an O(n2)-time algorithm for this
problem, prove that it’s correct, and analyze its running time.

Dijkstra(G, s):

1 d = [∞] ∗ n; d[s] = 0; S = ∅
2 while |S| < n:
3 u = vertex in V \S with smallest d[u]
4 add u to S
5 for v ∈ G[u]:
6 d[v] = min(d[v], d[u] + ℓ(u, v))

7 return d

Algorithm: Initialize S = ∅ and d[s] =
0. While |S| < n, find the vertex u ∈ V \S
with the smallest d-value, add it to S, and
process it (i.e. relax every edge that leaves
u). Once every vertex has been added to
S, return d.

Dijkstra’s algorithm is greedy in the
sense that once a vertex u has the small-
est d-value, we “finalize” the value of d[u].
Dijkstra’s algorithm is also a DP in some
sense, since it (along with DAG-DP and

Bellman-Ford) relies on the concept of edge relaxations: a shortest s-v path comprises a shortest
s-u path plus the edge (u, v).

Correctness: Let δ(u) denote the distance from s to u; we will show by induction that when u
gets added to S, d[u] = δ(u). The base case is u = s, in which case d[u] = 0 = δ(u).

Now suppose u is the (k + 1)-th vertex added to S. Let P denote the s-u path found by the
algorithm, and let P ∗ denote any s-u path. Since u is not in S yet, P ∗ must leave S through some
edge (x, y). Since Dijkstra’s is about to add u to S, at this point, we have d[u] ≤ d[y] ≤ d[x]+ℓ(x, y).
By induction, d[x] = δ(x), and all edge lengths are positive, so ℓ(P ∗) ≥ δ(x) + ℓ(x, y). Putting this
all together, we can conclude d[u] ≤ ℓ(P ∗), which implies d[u] = δ(u).

Running time: The algorithm makes O(n) iterations. In each iteration, it takes O(n) time to
find the vertex u ∈ V \ S that minimizes d[u], and O(out-deg(u)) = O(n) time to process u. Thus,
the total running time is O(n2).

Remark

The implementation described above uses an array as a priority queue. But like Prim’s
algorithm (Section 3.1), Dijkstra’s algorithm can be implemented in O(m log n)-time using a
heap-based priority queue. And if we use a Fibonacci heap, we can reduce this running time
to O(m+ n log n).

5.4 Floyd-Warshall

In this section, we solve the All-Pairs Shortest Path (APSP) problem. The edge lengths could be
negative, but again, we assume that G has no negative cycles (see Section 5.2).

32

Problem Statement

The input is G, a directed graph with edge lengths ℓ. Our goal is to return an n× n array d,
where for all u, v ∈ V , d[u][v] is the distance from u to v. Describe an O(n3)-time algorithm
for this problem, explain why it’s correct, and analyze its running time.

One correct solution is to run Bellman-Ford n times (once per s ∈ V) but its running time is
n · O(mn) = O(mn2) = O(n4), which is quite large. So instead, we’ll use dynamic programming
again. This time, instead of reducing the number of edges the path can use, we shrink the problem
by reducing the set of vertices the path can use.

Subproblems: For all u, v ∈ V and r ∈ {0, 1, . . . , n}, let OPT[u][v][r] denote the length of the
shortest walk from u to v that with vertices [r] available as intermediate vertices. (Recall that
V = [n] = {1, . . . , n}.) We will return OPT[·][·][n].

Recurrence: If r = 0, then we are not allowed to use any vertices as intermediate vertices, so

OPT[u][v][0] =

0 if u = v

ℓ(u, v) if (u, v) ∈ E

∞ otherwise.

If r ≥ 1, then the walk for OPT[u][v][r] either contains r as an intermediate vertex or doesn’t. If
it doesn’t, then it is as if vertex r were not allowed as an intermediate vertex. Otherwise, the walk
can be split into a u-r walk plus an r-v walk. Thus, we have

OPT[u][v][r] = min(OPT[u][v][r − 1],OPT[u][r][r − 1] + OPT[r][v][r − 1]).

Floyd-Warshall(G):

1 d = [∞] ∗ (n× n× (n+ 1))
2 for u ∈ V :
3 d[u][u][0] = 0
4 for v ∈ G[u]:
5 d[u][v][0] = ℓ(u, v)

6 for r ∈ V :
7 for u ∈ V :
8 for v ∈ V :
9 d[u][v][r] = min(d[u][v][r−1], d[u][r][r−1]+d[r][v][r−1])

10 return d[·][·][n] // return table n

Algorithm: We can think of the DP “table” as n + 1 tables, one per r ∈ {0, 1, . . . , n}, where
table r is an n × n array containing the values of OPT[u][v][r]. Table r only depends on values in
table r − 1, so the algorithm can compute the recurrence table by table. Within each table, the
order of computation does not matter. At the end, we return table n.

Running time: There are O(n3) subproblems, and we solve each one in O(1) time, so the total
running time is O(n3).

33

6 Flows and Cuts

If the shortest path problem is about sending one truck from a location s to another location t, the
maximum flow problem is about sending as many trucks as possible from s to t. It also has many
surprising applications and extensions.

Overview

Section Summary Time

6.1: Ford-Fulkerson While the residual graph Gf has an s-t path P :
augment f along P and update Gf . Vertices
reachable from s in last Gf form a minimum s-t cut.

O(mv)

6.2: Bipartite Matching Add edges from s to L and R to t, set all c(e) = 1,
find maximum flow, return edges with flow.

O(mn)

6.3: Bipartite VC Add edges from s to L and R to t, new edges have
c(e) = 1, old edges have c(e) =∞, find minimum cut
S, return (L \ S) ∪ (R ∩ S).

↑

A flow network comprises (G, s, t), where G is a directed graph, each edge e has capacity c(e) ∈
Z+, s is a source vertex, and t is a sink vertex. We assume that no edges enter s, no edges leave
t, and G (ignoring edge directions) is connected. A cut is a subset S of vertices; S is an s-t cut if
s ∈ S and t ̸∈ S. For any cut S, we let δout(S) = {(u, v) ∈ E : u ∈ S, v ̸∈ S} denote the set of edges
leaving (or crossing) the cut and δin(S) denote the set of edges entering S.

A flow is a function f : E → R; for any flow f and cut S, we let f out(S) =
∑

e∈δout(S) f(e) and

define f in(S) analogously. (If S = {u}, we write f out(u) instead of f out({u}).) A flow is feasible if
it satisfies both of the following conditions:

1. Capacity constraints: For every e ∈ E, 0 ≤ f(e) ≤ c(e).

2. Conservation: For every u ∈ V \ {s, t}, f in(u) = f out(u).

The value of a flow f is defined as |f | = f out(s); a maximum flow is a feasible flow such that |f | is
maximized. The capacity of a cut S is defined as c(S) =

∑
e∈δout(S) c(e); a minimum s-t cut is an

s-t cut S such that c(S) is minimized.
We now prove a useful lemma that relates flows to cuts.

Lemma 6.1. For any feasible flow f and s-t cut S, |f | = f out(S)− f in(S) ≤ c(S).

Proof. Since |f | = f out(s)− f in(s) and f out(u)− f in(u) = 0 for all u ∈ S \ {s},

|f | =
∑
u∈S

f out(u)− f in(u) =
∑
u∈S

 ∑
e∈δout(u)

f(e)−
∑

e∈δin(u)

f(e)

 .

The above is the “vertex-centric” way of viewing |f |; let’s convert it to an “edge-centric” perspective.
For any e = (x, y), if x, y ∈ S then f(e) gets added and subtracted in the sum above, so it contributes
nothing to |f |. Thus, the only edges that contribute a non-zero amount to |f | are those with exactly

34

one endpoint in S. More specifically, if x ∈ S and y ̸∈ S, then f(e) only contributes positively, and
if x ̸∈ S and y ∈ S, then f(e) only contributes negatively. In other words, we have

|f | =
∑

e∈δout(S)

f(e)−
∑

e∈δin(S)

f(e) = f out(S)− f in(S) ≤
∑

e∈δout(S)

c(e) = c(S).

Note that f(e) is just another edge attribute, so if we need to return f , we can incorporate it
into an adjacency list as we did for edge weights: for each u ∈ V , G[u] is a list of tuples (v, c, f)
where v is an out-neighbor of u, c = c(u, v), and f = f(u, v).

6.1 Ford-Fulkerson

Problem Statement

The input is a flow network (G, s, t), and our goal is to return a maximum s-t flow. Describe
an O(mv)-time algorithm for this problem (where v is the value of the maximum flow), prove
that it’s correct, and analyze its running time.

One greedy approach is the following: use DFS (or any pathfinding algorithm) to find an s-t
path P , increase f(e) by ∆ = mine∈P c(e) for all e ∈ P , decrease c(e) by ∆ for all e ∈ P , and repeat
until we can’t make any more progress. This is almost the right idea, but instead of searching for
P in G, we should search for P in the residual network Gf defined below.

Residual(G, f):

1 Gf = (V (G), Ef = ∅)
2 for e = (u, v) ∈ E(G):
3 if f(e) < c(e):
4 add (u, v) to Ef with capacity c(e)− f(e) // forward edge

5 if f(e) > 0:
6 add (v, u) to Ef with capacity f(e) // backward edge

7 return Gf

For any flow f , the “forward” edges in Gf represent how much capacity remains in G, and the
“backward” edges in Gf represent how much flow in f we can “undo.” Notice that m ≤ |E(Gf)| ≤
2m where m = |E(G)|, as usual.

Algorithm: The Ford-Fulkerson algorithm is the greedy approach described above, except we do
not modify G. Instead, in each iteration, we search for an s-t path P using DFS (or any pathfinding
algorithm) in Gf , augment f along P by the minimum residual capacity cf (e) over all e ∈ P , and
update Gf by setting Gf = Residual(G, f).

Correctness: We first prove that the algorithm terminates within v iterations by showing that
|f | increases by at least 1 in each iteration. Observe that for any augmenting path P , the first edge
e of P must leave s, and no edges of G enter s, so e must be a forward edge. This means f(e)
increases by ∆P , so |f | = f out(s) increases by ∆P ≥ 1.

35

Ford-Fulkerson(G, s, t):

1 set Gf = G and all f(e) = 0
2 while Gf has an s-t path P :
3 ∆P = mine∈P cf (e)
4 for e = (u, v) ∈ P :
5 if e is a forward edge:
6 f(u, v) += ∆P

7 else:
8 f(v, u) −= ∆P

9 Gf = Residual(G, f)

10 return f

Now we prove that the flow f returned by Ford-
Fulkerson is a maximum flow.1 By Lemma 6.1, it suf-
fices to find a cut S∗ such that |f | = c(S∗). Let S∗

denote the set of vertices reachable from s in Gf at the
end of the algorithm (so t ̸∈ S∗). For every e = (u, v)
leaving S∗, f(e) = c(e) because otherwise, e would be a
forward edge in Gf , making v reachable from s, contra-
dicting the assumption that v ̸∈ S∗. Similarly, we can
show that f(e′) = 0 for every e′ ∈ δin(S∗). Combining
this with Lemma 6.1, we get

|f | = f out(S∗)− f in(S∗) =
∑

e∈δout(S∗)

c(e)− 0 = c(S∗).

Running time: As shown in the correctness proof, the algorithm makes at most v iterations. If
we use any linear-time pathfinding algorithm (e.g., DFS) to find each augmenting path, then each
iteration takes O(m) time, so the total running time is O(mv).

Minimum s-t Cut

The correctness proof of Ford-Fulkerson essentially shows us how to find a minimum s-t cut.

Problem Statement

The input is a flow network (G, s, t), and our goal is to return a minimum s-t cut. Describe
an O(mv)-time algorithm for this problem (where v is the value of the maximum flow), prove
that it’s correct, and analyze its running time.

Algorithm: Return S, the set of vertices reachable from s in Gf at the end of Ford-Fulkerson.

Correctness: In the correctness proof of Ford-Fulkerson, we showed that the maximum flow value
is |f | = c(S). If there exists an s-t cut S ′ such that c(S ′) < c(S), then c(S ′) < |f |, contradicting
Lemma 6.1.

Running time: The algorithm consists of Ford-Fulkerson followed by one call of DFS (or any
pathfinding algorithm), so (assuming v ≥ 1) its running time is O(mv) +O(m+ n) = O(mv).

1Technically, we should also show that f is a feasible flow, but the proof is relatively straightforward and somewhat
tedious, so we leave it as an exercise.

36

6.2 Bipartite Matching

In this section, we describe an application of the maximum flow problem. An undirected graph G
is a bipartite graph if V can be partitioned into L,R such that every edge in G has exactly one
endpoint in L. Given a bipartite graph, in O(m + n) time, we can label each vertex with either L
or R. In any undirected graph, a subset of edges is a matching if no two edges in the subset share
an endpoint.

Problem Statement

The input is a bipartite graph G = (L∪R,E). Our goal is to return a maximum matching in
G. Describe an O(mn)-time algorithm for this problem, prove that it’s correct, and analyze
its running time.

Bipartite-Matching(G):

1 G′ = (V ′ = V,E ′ = E)
2 direct every edge in E ′ from L to R
3 for e ∈ E ′ :
4 c(e) = n

/* any c(e) ∈ Z+ works, but c(e) = n will be

useful for the next section */

5 add s, t to V ′

6 for u ∈ L:
7 add (s, u) to E ′ with capacity 1
8 for v ∈ R :
9 add (v, t) to E ′ with capacity 1

10 f = Ford-Fulkerson(G′, s, t)
11 return M = {e ∈ E | f(e) = 1}

Algorithm: Construct G′ = (V ′, E ′) as follows: V ′ = V ∪ {s, t} where s and t are new vertices;
E ′ contains every edge in G directed from L to R, as well as (s, u) for all u ∈ L and (v, t) for
all v ∈ R. Edges from L to R have capacity n = |V (G)|; all other edges have capacity 1. Call
Ford-Fulkerson(G′, s, t) to find a maximum s-t flow f in G′, and return M = {e ∈ E | f(e) = 1}.

Correctness: We first show that M is a matching. For any u ∈ L, f in(u) ≤ 1 and f is conserved
at u, so f out(u) ≤ 1. Thus, u is incident to at most one edge in M . Similarly, we can show that
every v ∈ R is incident to at most one edge in M .

Furthermore, we can see that |f | = |M | by applying Lemma 6.1 to the cut S = {s} ∪ L. Each
edge of M contributes one unit of flow to f out(S), and f in(S) = 0, so |f | = |M |.

Finally, we show that M is a maximum matching. For contradiction, suppose there exists a
matching M∗ such that |M∗| > |M |. We can convert M∗ to a flow f ∗ such that |M∗| = |f ∗|
by setting f ∗(s, u) = f ∗(u, v) = f ∗(v, t) = 1 for all (u, v) ∈ M∗ (and f ∗(e) = 0 for all other
e ∈ E ′). Since f ∗ consists of |M∗| edge-disjoint paths, |f ∗| = |M∗|. If |M∗| > |M |, then |f ∗| > |f |,
contradicting the optimality of Ford-Fulkerson.

37

Remark

The Bipartite Matching algorithm and its correctness proof follow a common format for
optimization problems: given an instance X of some problem A, (1) convert X to an instance
Y of another problem B, (2) optimally solve Y to obtain a solution S ′, and (3) convert S ′ to
a solution S for X. Then show that S is optimal for X because S ′ is optimal for Y .

Running time: Constructing G′ andM takes O(m+n) time. In G′, there are O(m) edges and the
maximum flow value is at most n (since the capacity of {s} is at most n), so Ford-Fulkerson(G′, s, t)
takes O(mn) time. Thus, the total running time is O(m+ n) +O(mn) = O(mn).

6.3 Bipartite Vertex Cover

Recall that Ford-Fulkerson can be extended to solve the minimum s-t cut problem. This allows us
to solve another problem on bipartite graphs. A subset S of vertices is a vertex cover if every edge
has at least one endpoint in S.

Problem Statement

The input is a bipartite graph G = (L ∪ R,E). Our goal is to return a minimum vertex
cover of G. Describe an O(mn)-time algorithm for this problem, prove that it’s correct, and
analyze its running time.

Bipartite-VC(G):

1 construct (G′, s, t) as before
2 S = minimum s-t cut in G′

3 return C = (L \S)∪ (R∩S)

Algorithm: Construct G′ = (V ′, E ′) exactly as we
did for Bipartite Matching (Section 6.2). Find a min-
imum s-t cut S in G′ (using the extension of Ford-
Fulkerson described in Section 6.1) and return C =
(L \ S) ∪ (R ∩ S).

Correctness: We first show that C is a vertex cover.
For contradiction, suppose {u, v} ∈ E is not covered by C. Then u ∈ L ∩ S and v ∈ R \ S, so in
G′, (u, v) leaves S. But this means c(S) ≥ n, contradicting the fact that S is a minimum s-t cut.
(The cut {s} has capacity |L| < n.)

Now we show |C| = c(S). There are two types of edges leaving S: those of the form (s, u) where
u ∈ L \ S, and those of the form (v, t) where v ∈ R ∩ S. (Again, since S is a minimum s-t cut,
there cannot be an edge (u, v) leaving S where u ∈ L.) Each of these edges has capacity 1, so
c(S) = |L \ S|+ |R ∩ S| = |C|.

Finally, we show that C is a minimum vertex cover. For contradiction, suppose C∗ is a vertex
cover such that |C∗| < |C|. Consider the s-t cut S∗ = {s} ∪ (L \ C∗) ∪ (R ∩ C∗). By the same
reasoning as above, we have c(S∗) = |C∗|, so c(S∗) < |C| = c(S), contradicting the fact that S is a
minimum s-t cut.

Running time: This analysis is essentially identical to that in Section 6.2.

38

7 NP-Hardness

If a problem is NP-hard, it is unlikely that there exists a polynomial-time algorithm for the problem.
(In this chapter, exact running times won’t be essential for our purposes.)

Overview

Section Summary

7.1: Reductions, P, and NP To show B is NP-hard, prove A ≤ B for some
NP-hard problem A.

7.2: IndependentSet to VertexCover Return (G, n− k).

7.3: 3SAT to IndependentSet Create one triangle per clause, add conflict edges.

7.4: VertexCover to DominatingSet For each edge, add a parallel vertex.

7.5: DirHamCycle to HamCycle Replace each u ∈ V with a path (uin, u, uout) and
each (u, v) ∈ E with {uout, vin}.

This chapters differs from the others in two ways. First, we’ll consider decision problems, which
comprise an input specification and a yes/no question Q. The optimization problems we’ve seen can
be translated to decision problems by introducing an additional input k and asking if the optimal
value is at most k (if the problem is a minimization problem) or at least k (if the problem is a
maximization problem). Some examples are below.

Optimization problem Decision version

Minimum spanning tree Input: (G, k)
Q: Is the weight of the MST of G at most k?

0/1 Knapsack Input: (v, w,B, k)
Q: Is the value of the optimal solution at least k?

Maximum Flow Input: (G, s, t, k)
Q: Is the value of the maximum s-t flow at least k?

Second, instead of solving the decision problem, we’ll show that it is very unlikely that there
exists a polynomial-time algorithm that solves the problem. For a variety of reasons, theoretical
computer scientists generally categorize a problem as “easy” if we know that it can be solved in
polynomial time and “hard” otherwise.

7.1 Reductions, P, and NP

Let A be a decision problem. Informally, A is in the complexity class “P” if it can be solved in
polynomial time, and A is in “NP” if it can be solved by a brute-force algorithm. (Note that P
stands for “polynomial time” and NP stands for “nondeterministic polynomial time,” not “not
polynomial time.”) It is known that P ⊆ NP, and it is widely believed that P ̸= NP (because there

39

are many problems in NP that appear impossible to solve in polynomial time, despite significant
efforts), but proving P ̸= NP is a famous, open problem.

Remark

For our purposes, it is not critical to fully understand the definitions of P and NP. Instead,
we will focus on describing reductions from one decision problem to another. For more on
complexity classes, I recommend Introduction to the Theory of Computation by Sipser.

Imagine that we knew that a problem A cannot be solved in polynomial time, and we want
to prove that another problem B also cannot be solved in polynomial time. For contradiction, we
assume there exists a polynomial-time algorithm ALGB for B, and we’ll construct a polynomial-time
algorithm for ALGA. Fortunately, we have access to a polynomial-time algorithm f that transforms
every “yes” instance of A into a “yes” instance of B and every “no” instance of A into a “no” instance
of B. This makes the construction of ALGA fairly straightforward: given X, return ALGB(f(X)).

This construction of ALGA motivates the following definition: for any decision problems A and
B, a polynomial-time reduction from A to B is a polynomial-time algorithm f that transforms every
instance X of A into an instance f(X) of B such that X is a “yes” instance of A if and only if f(X)
is a “yes” instance of B. We let A ≤ B denote that A is polynomial-time reducible to B.

Remark

It’s natural to wonder if our definition of A ≤ B is too strict. That is, perhaps “A ≤ B”
should simply mean the following: if B can be solved in polynomial time, then so can A. (This
is known as a Cook or polynomial-time Turing reduction.) However, for reasons beyond the
scope of these notes, we stick to our definition of “A ≤ B” (i.e., a Karp reduction) which is
more common in the undergraduate algorithms literature.

So if we want to prove that B cannot be solved in polynomial, time, it suffices to prove A ≤ B,
which means describing a polynomial-time algorithm f that satisfies the following:

• The “forward” direction: If X is a “yes” instance X of A, f(X) is a “yes” instance of B.

• The “backward” direction: If f(X) is a “yes” instance of B, X is a “yes” instance of A.

Remark

It is much simpler to prove A ≤ B if we only cared about one direction. For example, if we
only cared about the forward direction, the reduction can ignore its input and simply return
a tiny “yes” instance of B.

A problem B is NP-hard if A ≤ B for all A ∈ NP, and B is NP-complete if B ∈ NP and
B is NP-hard.1 Notice that a polynomial-time algorithm for any NP-hard problem would yield a
polynomial-time algorithm for every problem in NP. Furthermore, to show that B is NP-hard, it
suffices to show that A ≤ B for some NP-hard problem A. It is not obvious that NP-hard problems
even exist, but in this chapter, we’ll see multiple examples.

1There are problems, such as the Halting problem, that are NP-hard and not in NP. On the other hand, Ladner’s
theorem states that if P ̸= NP, then there are problems in NP \ P that are not NP-hard.

40

Remark

Where does the chain of reductions begin? In other words, what was the “first” NP-hard
problem? One answer is the 3-Satisfiability Problem (Section 7.3); the Cook-Levin theorem
proves (from scratch) that it is NP-hard. Again, for further reading, I recommend Introduction
to the Theory of Computation by Sipser.

In the rest of this chapter, unless stated otherwise, G is an undirected graph and k ∈ Z.

7.2 Independent Set to Vertex Cover

We start with a relatively simple reduction.

• IndependentSet: Input: (G, k). Q: Does G contain an independent set of size at least k?

• VertexCover: Input: (G, k). Q: Does G contain a vertex cover of size at most k?

Problem Statement

Prove IndependentSet ≤ VertexCover.

Reduction. Given (G, k), return (G, n− k), where n is (as usual) the number of vertices in G.

Forward direction. If (G, k) is a “yes” instance of IndependentSet, then G has an indpendent
set S of size |S| ≥ k. Notice that S = V \ S has size |S| ≤ n− k, so it suffices to show that S is a
vertex cover of G. For contradiction, suppose there exists {u, v} ∈ E such that u ̸∈ S and v ̸∈ S.
This implies u ∈ S and v ∈ S, which contradicts the fact that S is an independent set in G.

Backward direction. (The proof is similar. For many reductions, the proof of the backward
direction is essentially the reverse of the proof of the forward direction.) If (G, n − k) is a “yes”
instance of VertexCover, then G has a vertex cover S of size |S| ≤ n− k. Notice that S = V \S has
size |S| ≥ k, so it suffices to show that S is an independent set in G. For contradiction, suppose
there exists {u, v} ∈ E such that u ∈ S and v ∈ S. This implies u ̸∈ S and v ̸∈ S, which contradicts
the fact that S is a vertex cover of G.

7.3 3-SAT to Independent Set

The 3-Satisfiability Problem (3SAT) looks quite different from the problems we’ve encountered so
far, but it is historically significant and has many practical applications.

• 3SAT: Input: A set of variables {x1, . . . , xn} and clauses, where each clause is the ∨ (“OR”)
of 3 literals (xi or xi). Q: Is there an assignment ϕ : X → {T,F} such that every clause is T?

• IndependentSet: Input: (G, k). Q: Does G contain an independent set of size at least k?

Problem Statement

Prove 3SAT ≤ IndependentSet.

41

Reduction. For each clause Cj, add a triangle to G by creating one vertex per literal in Cj and
connecting the three vertices together. Thus, if there are ℓ clauses, G has 3ℓ vertices and 3ℓ edges
so far. For any two vertices in G, if their corresponding literals are negations of each other, then
add a “conflict” edge between these two vertices. Return (G, k = ℓ).

Forward direction. Suppose ϕ satisfies all clauses. This means each clause contains at least one
true literal. Let S be the set of ℓ vertices that correspond to these literals. Notice that |S| = k;
we claim that S is an independent set. No triangle edge can have both endpoints in S because S
contains exactly one vertex per triangle.

Now consider any conflict edge {u, v}. By construction, u represents a variable xi and v repre-
sents its negation xi (or vice versa). However, xi cannot be true in one clause while xi is true in
another clause, so S cannot contain both u and v, as desired.

Backward direction. Let S be an independent set of size ℓ; we will set every ϕ(xi) such that
all clauses are satisfied. Since S has size ℓ and G has ℓ triangles, S contains exactly one vertex
per triangle. Our assignment ϕ sets the literals corresponding to vertices in S to T (so if u ∈ S
corresponds to xi, we set ϕ(xi) = F). This is a valid assignment because S cannot contain a vertex
corresponding to some variable xi and another vertex corresponding to xi. Thus, in every clause,
we set at least one of its literals to be T, so ϕ satisfies all clauses.

7.4 Vertex Cover to Dominating Set

A dominating set is a subset S of vertices such that for all u ∈ V , u ∈ S or u has a neighbor in S.

• VertexCover: Input: (G, k). Q: Does G contain a vertex cover of size at most k?

• DominatingSet: Input: (G, k). Q: Does G contain a dominating set of size at most k?

Problem Statement

Prove VertexCover ≤ DominatingSet.

VC-to-DS(G, k):

1 G′ = G
2 for e = {u, v} ∈ E(G):
3 add xe to V (G′)
4 add {u, xe}, {v, xe} to E(G′)

5 k′ = k + |I(G)|
6 return (G′, k′)

Reduction. Given (G, k), initialize G′ = G. For
each edge e = {u, v} ∈ E(G), add a vertex xe to G′,
as well as the edges {u, xe} and {v, xe}. (Intuitively,
G′ is G with a copy of each edge, and xe is a new
vertex placed “on” the copy.) Set k′ = k + |I(G)|,
where I(G) is the set of isolated vertices in G. Re-
turn (G′, k′ = k).

Forward direction. Let S be a vertex cover of G
such that |S| ≤ k; we claim that S ′ = S ∪ I(G) is a

dominating set of G′. Consider any vertex u ∈ V (G′). In all three cases, u ∈ S ′ or u has a neighbor
in S ′:

1. If u ∈ I(G), then u ∈ S ′.

42

2. If u is a new vertex xe, then the corresponding edge e is covered by some vertex in S, so u
has a neighbor in S ′.

3. If u ∈ V (G) \ I(G), then u is incident to at least one edge {u, v} ∈ E(G). Since S covers this
edge, u ∈ S or v ∈ S.

Backward direction. Let S1 be a dominating set of G′ such that |S1| ≤ k + |I(G)|. Notice that
S1 must contain all of I(G), so S2 = S1 \ I(G) has size |S2| ≤ k. Create S3 by replacing any xe ∈ S2

with an endpoint of e (or nothing, if both endpoints are already in S3), so S3 ⊆ V (G) and |S3| ≤ k.
Notice that S3 is still a dominating set of G′ (excluding I(G)); we claim that S3 is a vertex cover
of G. Consider any e = {u, v} ∈ E(G). Since xe is dominating by S3, u ∈ S3 or v ∈ S3, so e is
covered by S3.

Remark

When proving VertexCover ≤ DominatingSet, it might be tempting to return (G′, k′) = (G, k).
It is also might tempting to simply place a vertex xe directly “on” each edge e rather than
a copy of e. Neither of these reductions work, but in general, it can be helpful to consider
what goes wrong if the reduction minimally modifies its input.

7.5 Directed to Undirected Hamiltonian Cycle

In any graph, a Hamiltonian cycle is a cycle that visits every vertex exactly once.

• DirHamCycle: Input: G, a directed graph. Q: Does G contain a Hamiltonian cycle?

• HamCycle: Input: G, an undirected graph. Q: Does G contain a Hamiltonian cycle?

Problem Statement

Prove DirHamCycle ≤ HamCycle.

Remark

Proving HamCycle ≤ DirHamCycle (assuming n ≥ 3) is simpler: replace each {u, v} ∈ E with
the two directed edges (u, v) and (v, u). This idea often works when reducing an undirected
problem to its directed version; the idea below often works for the opposite goal.

Reduction. Construct G′ as follows: starting with the empty graph, for each u ∈ V (G), add
vertices uin, u, uout to V (G′) and edges {uin, u}, {u, uout} to E(G′). In other words, each vertex gets
replaced by a path of length 2. Then, for each (u, v) ∈ E(G), add an edge {uout, vin} to E(G′). (So
edges entering u in G are incident to uin, and edges leaving u in G are incident to uout.)

Forward direction. Suppose G has a Hamiltonian cycle C. We can construct a Hamiltonian
cycle C ′ in G′ by following C. More specifically, whenever C goes from some vertex u to another
vertex v, C ′ takes the (undirected) path (u, uout, vin, v).

43

DHC-to-HC(G):

1 G′ = empty graph
2 for u ∈ V (G):
3 add uin, u, uout to V (G′)
4 add {uin, u}, {u, uout} to E(G′)

5 for (u, v) ∈ E(G):
6 add {uout, vin} to E(G′)
7 return G′

Backward direction. Suppose G′ has a Hamil-
tonian cycle C ′, and consider any vertex u ∈
V (G). Since u has exactly two neighbors in G′,
namely uin and uout, C

′ must contain (uin, u, uout)
as a subpath. (Alternatively, C ′ could contain
(uout, u, uin), but in that case, we reverse C ′.) Af-
ter visiting uout, C

′ must visit some vertex vin fol-
lowed by v, vout. Thus, if we remove all vertices in
V (G′)\V (G) from C ′, the result is a Hamiltonian
cycle in G.

44

8 Approximation Algorithms

Approximation algorithms don’t always return an optimal solution, but their solutions are often
close to optimal. They always run in polynomial time, and they are often relatively simple. (Again,
in this chapter, exact running times won’t be essential for our purposes.)

Overview

Section Summary Approx. ratio

8.1: Vertex Cover Return endpoints of any maximal matching 2

8.2: Load Balancing Greedy: Assign each job to machine with smallest
current load

↑

8.3: Metric k-Center Greedy: Keep picking the vertex farthest from its
current center

↑

8.4: Maximum Cut Local search: Keep improving the current solution
by moving one vertex at a time

1/2

A α-approximation algorithm is a polynomial-time algorithm that always returns a solution
whose value ALG is within a factor α of the optimal value OPT. In other words, for minimization
problems, there exists α ≥ 1 such that ALG satisfies the following on every instance:

OPT ≤ ALG ≤ α · OPT.

The approximation ratio of an algorithm is the smallest α such that the algorithm is an α-
approximation algorithm. Proving that an α-approximation algorithm is “correct” means showing
that the algorithm satisfies ALG ≤ α ·OPT on every instance. (For maximization problems, we flip
the inequalities above, so α ≤ 1 and we want OPT ≥ ALG ≥ α · OPT.)

8.1 Vertex Cover

Problem Statement

The input is an undirected graph G. Our goal is to return a minimum vertex cover of G.
Describe a 2-approximation algorithm for this problem and prove that it’s correct.

VC-Matching(G, k):

1 S = empty set
2 while G has an edge e = {u, v}:
3 add u, v to S
4 remove u, v from G

5 return S

Algorithm: Set S = ∅. If G has an edge e =
{u, v}, add both endpoints of e to S, and remove u
and v from G. (Note that when we remove a ver-
tex from a graph, we also remove all edges incident
to the vertex.) Repeat this process until G has no
edges and return S.

Correctness: Notice that the edges considered by
the algorithm form a matching M , so |ALG| = 2 ·

45

|M |. Furthermore, each vertex in OPT can cover at most one edge in M , so |OPT| ≥ |M |. Thus,
|ALG| = 2 · |M | ≤ 2 · |OPT|.

8.2 Load Balancing

Scheduling is a rich topic with many applications. In a typical scheduling problem, there are n jobs
and m machines, and we need to assign each job to a machine. Every job has a length, and the
load on a machine is the sum of the lengths of the jobs assigned to that machine. The makespan of
an assignment is the maximum load created by that assignment.

Problem Statement

The input is (ℓ,m), where ℓ is an array of n positive integers representing job lengths and
m is the number of machines. Our goal is to return an assignment of jobs to machines that
minimizes the makespan. Describe a 2-approximation algorithm for this problem and prove
that it’s correct.

Algorithm: The algorithm is greedy: iterate through the jobs (in any order), assigning each one
to the machine with the smallest load so far.

Remark

Notice that this algorithm makes its final decisions without knowing what the future holds.
Algorithms that satisfy this property are known as online algorithms.

Correctness: Suppose ALG achieves a makespan of T , the load of i ∈ [m] is T , and k was the
last job assigned to i. When ALG assigned k to i, i had the smallest load. This means the load on
every machine is at least T − ℓ[k], so

∑n
j=1 ℓ[j] ≥ m(T − ℓ[k]). Rearranging yields

T ≤
∑n

j=1 ℓ[j]

m
+ ℓ[k].

Now let T ∗ denote the optimal makespan. Since the average load in any assignment is
∑

j ℓ[j]/m,
we have T ∗ ≥

∑
j ℓ[j]/m. Combining this with the inequality above, we get

T ≤
∑n

j=1 ℓ[j]

m
+ ℓ[k] ≤ T ∗ + T ∗ = 2T ∗,

where ℓ[k] ≤ T ∗ because OPT must assign job k to some machine.

An improved analysis

In ALG, since every machine has load at least T − ℓ[k] when k was assigned to i, the sum of all job
lengths excluding job i is at least m(T − ℓ[k]). Thus, we can improve the analysis from above:

T ≤
∑n

j=1 ℓ[j]− ℓ[k]

m
+ ℓ[k] =

∑n
j=1 ℓ[j]

m
+

(
1− 1

m

)
ℓ[k] ≤

(
2− 1

m

)
T ∗.

This implies that the algorithm is a (2− 1/m)-approximation algorithm.

46

8.3 Metric k-Center

Clustering is another rich topic with many applications; here is a classical problem. If X is a set, a
function d : X ×X → R is a metric if it satisfies all of the following properties:

• For all u, v ∈ X, d(u, v) ≥ 0,

• For all u, v ∈ X, d(u, v) = 0 if and only if u = v,

• For all u, v ∈ X, d(u, v) = d(v, u) (symmetry), and

• For all u, v, w ∈ X, d(u,w) ≤ d(u, v) + d(v, w).

For any S ⊆ X, we can create clusters by assigning each point in X to its closest point in S; each
point in S is the “center” of its cluster. The radius of a cluster is the maximum distance from its
center to a point in the cluster.

Problem Statement

The input is (d, k), where d is an n×n array representing a metric on a set of points X = [n]
and k ∈ Z+. Our goal is to return a subset S of k points such that the maximum radius
across the k clusters is minimized. Describe a 2-approximation algorithm for this problem
and prove that it’s correct.

Algorithm: The algorithm is greedy: Pick an arbitrary point as the first center. Then repeat the
following k − 1 times: find the point whose current distance to its closest center is maximized, and
add that point as a center.

Remark

The objective is similar to Load Balancing (Section 8.2): in both cases, the algorithm greedily
minimizes the maximum value across multiple entities (i.e., machines or clusters).

Correctness: Let r∗ denote the optimal maximum radius, and for any center c ∈ X, let OPT(c)
denote the set of points OPT assigns to c. Consider any point p ∈ X, and suppose p ∈ OPT(t∗).
There are two cases:

1. If ALG contains a center t ∈ OPT(t∗), then

d(p, t) ≤ d(p, t∗) + d(t∗, t) ≤ r∗ + r∗ = 2r∗,

where the first inequality is the triangle inequality and the second inequality holds because
OPT assigns both p and t to t∗.

2. If ALG∩OPT(t∗) = ∅, by the pigeonhole principle, there must exist c ∈ OPT such that OPT(c)
contains (at least) two centers u1, u2 ∈ ALG. Again, we have

d(u1, u2) ≤ d(u1, c) + d(c, u2) ≤ r∗ + r∗ = 2r∗.

Let’s assume u1 was added to ALG before u2. When u2 was added, it was the farthest point
in X from its closest center, so every p ∈ X is within distance 2r∗ to its closest center.

In both cases, we have shown that the distance from p to its closest center in ALG is at most 2r∗.

47

8.4 Maximum Cut

Suppose G is an undirected graph. For any cut S ⊆ V , we let δ(S) denote the set of edges crossing
S (i.e., those with exactly one endpoint in S). If each edge e has weight w(e), for any F ⊆ E, we
let w(F) =

∑
e∈F w(e).

Problem Statement

The input is G, an undirected graph where each edge e has weight w(e) ∈ Z+. Our goal is
to return a cut S that maximizes w(δ(S)). Describe a 1/2-approximation algorithm for this
problem and prove that it’s correct.

Max-Cut(G):

1 S = empty set // S can be any cut

2 while we can increase w(δ(S)) by moving one vertex u:
3 move u from S to V \ S (or vice versa)
4 return S

Algorithm: The algorithm is a “local search” algorithm: Start with any cut S. If there exists
u ∈ V such that moving u across the partition (S, V \ S) would increase w(δ(S)), then make the
move. Repeat this process until no such u exists. (It might not be obvious that this algorithm even
terminates, but we’ll show that it does.)

Correctness: In each iteration, w(δ(S)) increases by at least 1, and the maximum possible value
of w(δ(S)) is w(E). Thus, the algorithm terminates in at most w(E) iterations.

Remark

The running time of Max-Cut is not polynomial because w(E) could be, say, 2n. However,
there is a polynomial-time 0.49-approximation algorithm that is only slightly more compli-
cated than Max-Cut. (The idea is to move u only if w(δ(S)) increases by at least a factor of
(1 + 0.1/n) or so; the analysis is similar.)

Now consider any vertex u at the end of the algorithm, and let α(u) denote the total weight of
edges incident to u that contribute to w(δ(S)). If we move u across the partition (S, V \S), w(δ(S))
would decrease by α(u) and increase by w(δ(u)) − α(u). Since the algorithm terminated, the net
increase is at most 0, so α(u) ≥ w(δ(u))/2. In other words, every vertex is contributing at least
half as much as it possibly could to w(δ(S)). Thus, we can take the sum over all vertices to obtain
the desired result. More specifically,

∑
u∈V α(u) = 2 · w(δ(S)) and

∑
u∈V w(δ(u)) = 2 · w(E), so

2 · w(δ(S)) =
∑
u∈V

α(u) ≥ 1

2

∑
u∈V

w(δ(u)) = w(E) ≥ OPT.

48

	Preface
	Preliminaries
	Array Algorithms
	Max in Array
	Two Sum
	Binary Search
	Selection Sort
	Merge Sort

	Essential Graph Algorithms
	Breadth-First Search
	Depth-First Search
	Cycle Finding
	Topological Ordering
	Strongly Connected Components

	Greedy Algorithms
	Minimum Spanning Tree
	Selecting Compatible Intervals
	Fractional Knapsack

	Dynamic Programming
	Max in Array
	Longest Increasing Subsequence
	Longest Palindromic Subsequence
	0/1 Knapsack
	Edit Distance
	Independent Set in Trees

	Shortest Paths
	DAG DP
	Bellman-Ford
	Dijkstra's algorithm
	Floyd-Warshall

	Flows and Cuts
	Ford-Fulkerson
	Bipartite Matching
	Bipartite Vertex Cover

	NP-Hardness
	Reductions, P, and NP
	Independent Set to Vertex Cover
	3-SAT to Independent Set
	Vertex Cover to Dominating Set
	Directed to Undirected Hamiltonian Cycle

	Approximation Algorithms
	Vertex Cover
	Load Balancing
	Metric k-Center
	Maximum Cut

